天线阵列和滤波器常常通过改变钛酸钡锶(BST)电容上的电压来进行调谐。将这种铁电材料应用于电容时,只需施加一个电压,即可导致其晶体结构发生细小的变化,从而改变其介电常数,电容值因而随之改变。相比于传统的变容二极管,电子可调谐BST电容能够处理更高的功率和更大的信号幅度。
在典型应用中,调谐电容可补偿器件容差,调整滤波器的截止频率,或者匹配可调谐天线的网络阻抗。BST电容的调谐是通过施加0 V至30 V的电压来实现。现代电子器件所用的电源电压呈现越来越低的趋势,3.3 V、2.5 V甚至1.8 V电源已成为常用电源,尤其是在电池供电的应用中。如果仅仅针对这一功能而增加一个单独的电源,尽管可以获得调谐的好处,但并不总是值得这样做。因此,需要一种简便的方法来产生所需电源。
以此应用为例,假设电源电压为3 V,但为了完全控制BST电容,需要20 V以上的电压。两个主要电路模块分别是升压开关转换器ADP1613和高压DAC AD5504。图1所示电路可产生高达30 V的DAC输出电压。DAC输出设置BST电容的偏置电压,从而调整天线响应。
图1. 升压电源和高压DAC为BST电容提供调谐信号
ADP1613是一款升压DC-DC开关转换器(图4),集成了功率开关,能够提供高达20 V的输出电压。通过使用外部器件,它可以输出更高的电压。如图所示,ADP1613从3 V输入产生32 V输出。ADIsimPower™工具可以帮助设计人员根据输入要求轻松确定适当的器件。
ADP1613的32 V输出为四通道12位高压DAC AD5504(图5)供电,而该DAC的四路输出各自可以提供最高60 V的电压。R_SEL引脚上的电压决定其满量程输出。在此应用中,R_SEL连接到VDD,从而将满量程输出设置为30 V。DAC寄存器通过3 V兼容串行接口进行更新。利用脉冲将负载引脚(LDAC)拉低,可以同时更新所有四个DAC,因此可以同时改变四个BST电容。
图2所示为一个用作可调谐匹配网络的BST电容的等效电路。图3显示了BST电容与电压的传递函数以及天线响应。BST电容可以从Agile RF等供应商处购得。
图2. BST电容等效电路
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)