高频开关电源主要磁性元件的设计

高频开关电源主要磁性元件的设计,第1张

  引言

  高频开关电源中大量使用各种各样的磁性元件,如输入/输出共模电感,功率变压器,饱和电感以及各种差模电感。各种磁性元器件对磁性材料的要求各不相同,如差模电感希望μ值适中,但线性度好,不易饱和;共模电感则希望μ值要高,频带宽;功率变压器则希望μ值要适中,温度稳定好,剩磁小,损耗低等。在非晶材料出现以前,共模电感主要采用高μ值(6K~10K)Mn-Zn合金,差模电感多采用铁粉芯或开气隙铁氧体材料,变压器则采用铁氧体材料等。这些材料应用技术成熟,种类也很丰富,并有各种各样的产品形状供选择。随着非晶材料的出现和技术不断成熟,在开关电源设计中,非晶材料表现出许多其它材料无法比拟的优点。几种常用磁性材料基本性能比较如表l。

  

高频开关电源主要磁性元件的设计,第2张

 

  1 主变压器的设计

  对于高频开关电源的主要发热元件,主变压器的设计尤其重要,其尺寸的大小和材料的选择更是重要。

  1)主变压器的磁芯必须具备以下几个特点

  (1)低损耗;

  (2)高的饱和磁感应强度且温度系数小;

  (3)宽工作温度范围;

  (4)μ值随B值变化小;

  (5)与所选用功率器件开关速度相应的频响。

  早前高频变压器一般选用铁氧体磁芯,下面对VITROPERM500F铁基超微晶磁芯与德国西门子公司生产的N67系列铁氧体磁芯的性能进行较,见图l。

  

高频开关电源主要磁性元件的设计,第3张

 

  从以上图表可以看出两者有以下区别:

  (1)相同工作频率(200kHz以下),非晶材料损耗明显低于铁氧体,工作频率越低,工作B值越高,非晶材料优势越明显。但在250kHz以上频段,铁氧体损耗要明显低于非晶材料。

  (2)非晶材料损耗随温度变化量大大低于铁氧体,降低了变压器热设计的难度。

  (3)非晶材料导磁率随温度变化量大大低于铁氧体,降低了变压器设计的难度,提高了电源运行的稳定性和可靠性。

  (4)非晶材料Bs·μ值是铁氧体的10~15倍,意味着变压器体积重量可以大幅减小。

  变压器设计过程中,最困难的是热设计,变压器的产热与多方面的因素有关,如磁芯损耗,铜损等。开关频率增加,变压器的发热呈指数增加。若采用铁氧体磁芯,由于铁氧体的居里点较低,需对变压器磁芯作散热处理,工艺制作比较复杂。若散热处理不当,铁氧体磁材高温下易失磁,导致电路工作异常。若采用非晶做变压器,将工作ΔB由4000高斯提高到100007葛斯,开关器件的工作频率则可以降到100kHz以下。非晶材料在16~100kHz频率范围内,损耗/Bs值最低,相应的变压器匝数及体积最小,发热量也较小,对提高整机效率,减小模块电源的体积有巨大帮助。在采用软开关控制技术的前提下,可以充分发挥IGBT的低导通压降,大电流,高耐压的优点,大幅度地提高电源的可靠性。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2675506.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-14
下一篇 2022-08-14

发表评论

登录后才能评论

评论列表(0条)

保存