在以往,企业数据管理都以传统的IT架构为基础。当技术部门为业务部门解决问题时,需要从业务需求的探查、技术壁垒的打通等从上到下各个方面来建设新系统。每个系统的建成都自成一体,也就是烟筒构架,每个部门各自满足业务部门的需求。
这种构架不仅耗费各部门大量的精力也使得各个系统难以打通管理,无法形成更强大的数据能力,同时,对数据进行维护的工作量也非常大。但是在如今人工智能变革过程中,数据的获取和使用无疑成为了智能程度高低的瓶颈,所以能不能建立AI数据中台,意味着你的智能系统成败的关键。
现在的数据中台是全新的架构变革。一切业务数据化,一切数据业务化,是AI时代的标配。5G技术的发展,可能会进一步放大视图声数据的重要性。
不管从数据量的增长、数据处理技术的进步,还在站在企业对数据中台的认知来说, AI数据中台搭建都是每个企业必须要考虑的。AI中台是一个用来构建大规模智能服务的基础设施,对企业需要的算法模型提供了分步构建和全生命周期管理的服务,让企业可以将自己的业务不断下沉为一个个算法模型,以达到复用、组合创新、规模化构建智能服务的目的。
什么是AI数据中台?首先它不是一个平台,也不是一个系统,AI数据中台包含先进技术,但不仅仅是技术,更重要的是依托先进技术,利用其所拥有的核心资源,构建生态向心力,所以说AI数据中台是一种能力。
数据中台对一个企业,起着至关重要的作用,各个业务系统经年累月以烟囱架构形式存在而导致的数据孤岛、数据隔离、数据不一致等等。因为这些问题实在是过于繁杂,因此数据仓库、数据湖、主数据治理等一系列的工作职能应运而生。
这样的数据治理工作在进行了很多年后,数据中台这个概念逐渐有人提出了,阿里的《企业IT转型直到:阿里巴巴中台战略思想与架构实践》这本书更是对这个概念做了一次普及。现在我们发现,深度学习、机器学习等等一系列技术开始在这个平台下起到作用的时候。AI中台开始落地实施,AI中台是数据中台的进一步延伸,从数据中台一步一步演进过去。
AI中台是一个用来构建大规模智能服务的基础设施,对企业需要的算法模型提供了分步构建和全生命周期管理的服务,让企业可以将自己的业务不断下沉为一个个算法模型,以达到复用、组合创新、规模化构建智能服务的目的及业务赋能的作用。
简单来说,一个企业各个应用源源不断的产生数据,各个业务模块的数据汇总,经过统一的清洗、归类、纠错、标注、定义、颗粒化及构建索引,形成数据中台。再根据各类算法及机器学习,从而形成企业的AI中台。可对外输出决策能力、算法模型、功能模型及业务能力,这就是一个简单的AI中台模型。
AI发展必需依靠算法、数据和算力三方面的组合才能有更好的效果,现阶段算力需要硬件的突破,算法的进步需要更多的算法工程师的努力才能有突破。能否高效的利用数据是各大公司的差距所在,AI数据中台无疑是解决这个问题的最优解。率先搭建持续优化,也许可以帮助大企业在智能化方向上有个大的进步。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)