优化的小型车辆强混合系统的开发结果介绍

优化的小型车辆强混合系统的开发结果介绍,第1张

通过动力装置电气化改善车辆燃油经济性,是满足严格的燃油经济性法规的1项关键技术。但是,仅有少量的诸如B级小型车辆采用了电动装置,这是因为燃油经济性的提高相对于成本增加十分有限,而且还需额外增加电动装置的安装空间。研究了适合于小型车辆的强混合系统的最佳解决方案。首先,从能量效率最大化方面,比较了不同驱动模式中发动机效率和变速器效率分配,并为小型车辆选择了合适的自动变速器。比较混合动力系统功能时,确定了电动发电机连接方式,以及为同时满足燃油经济性和驾驶性能的电动机输出功率。此外,为实现换档过程中扭矩无中断和相对传统手动变速器较短的轴长,设计了电动发电机和变速器档位布置。开发了机械自动变速混合系统原型机和试验用车。最后介绍了能够实现扭矩无中断、灵活驾驶性能的换档顺序,及其在车辆上应用的评估结果。

近些年,由于全球变暖和能源消耗问题,燃油经济性法规变得更为严格。电动动力装置可有效改善燃油经济性,以此为基础开发了几种混合动力装置。然而,仅有少量的小型车辆采用了如强混合系统的电动动力装置。原因是燃油经济性的提高相对于成本增加十分有限,而且还需额外增加的电动装置的安装空间。

本研究中,日本爱信精机公司介绍了1种适合于小型车辆的混合动力系统及其机械自动变速器(HV-AMT)的验证结果。

1混合系统选择

电动力装置通常基于电气化程度和功能进行分类(图1)。考虑到未来严格的燃油经济性法规,本文侧重研究强混合动力。为选择系统类型/结构,能量效率综合了发动机效率和变速器效率,并作为改善燃油经济性的1种方法。

为提高发动机效率,使发动机集中运行在高效区域(优化运行工况点)。无级变速器(CVT)可以实现此功能。图2为1.0 L发动机车辆在LA 4号模式运行期间的工况模拟结果。

优化的小型车辆强混合系统的开发结果介绍,小型车混合动力装置的开发,第2张

图1 电气化程度和功能

优化的小型车辆强混合系统的开发结果介绍,小型车混合动力装置的开发,第3张

图2 LA 4号模式运行期间发动机工况点

从图2可知,小型车辆通常采用发动机高效区域,即使在认证驱动模式期间,如LA 4号。对小型车辆而言,CVT较有级变速器稍有优势。

表1示出典型变速器的传动效率特性。运行中仅在换档情况下使用液压压力的机械自动变速器(AMT)和双离合器自动变速器(DCT),传动效率最高,而利用液力变矩器保持传动比的自动变速器(AT)传递效率次之;通过滑轮和钢制皮带摩擦传递扭矩的CVT,效率最低。

表1 典型变速器特性

优化的小型车辆强混合系统的开发结果介绍,小型车混合动力装置的开发,第4张

注:[0]参照;[+]优势;[-]劣势;[--]极大劣势

就成本和外形尺寸而言,AMT最为合适。但是,ATM因换档期间扭矩中断,会产生换档冲击,其他变速器则不会。

根据以上内容,图3示出了1.0 L发动机车辆的能量效率(发动机效率×变速器效率)的模拟结果。

优化的小型车辆强混合系统的开发结果介绍,小型车混合动力装置的开发,第5张

图3 能量效率模拟结果

如图3所示,AMT、DCT和CVT的能量效率最高。AT的发动机效率较AMT和DCT更佳。因为AT的变矩器的传动比设置的大。

依据以上结果,AMT相对其他变速器,具有能效高,成本低的优点,因此被选作混合系统的基型变速器,以实现小型车辆最大燃油经济性。为消除AMT造成的换档冲击,在换档过程中,通过电机作为辅助动力。

2设计理念

2.1 电动机/发电机连接点高

在确定驱动装置结构时,研究了各种电动机/发电机(M/G)连接点能够实现的功能,各种连接点对比如图4所示。

输入轴连接指M/G在发动机和变速器之间,发动机可通过离合器断开。输出轴连接指M/G位于变速器输出轴。输入轴和输出轴连接指M/G放置于第三轴,2个离合器可从输入或输出轴断开。后轮连接指M/G安装在后驱动轴上。

如上所述,HV-AMT换档期间需提供辅助动力。此外,选择了具有最佳混合功能的“输入轴和输出轴连接”。

优化的小型车辆强混合系统的开发结果介绍,小型车混合动力装置的开发,第6张

图4 M/G连接点比较

2.2 M/G 驱动性能高

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2693876.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-15
下一篇 2022-08-15

发表评论

登录后才能评论

评论列表(0条)

保存