适用于宽电源电压幅度的高精度双极带隙基准电路

适用于宽电源电压幅度的高精度双极带隙基准电路,第1张

  设计并实现了一种bipolar工艺下的高精度带隙基准电路,通过Hspice验证,具有2.28×10-6 K-1的温度系数,在△V=10V的宽电源电压幅度范围作用下,具有1.2mV/V电源抑制特性及直流PSRR=79dB的高电源抑制比。

  引言

  电压基准广泛地应用在模拟电路中,在A/D、D/A的集成电路设计中,也需要基准来确定其输入或输出的全程范围。随着电路系统的不断复杂化,对基准源的要求也越来越高。尽管MOS器件的许多参数已被考虑用于基准产生,但双极电路,因其晶体管的特征参数具有最好的重复性,并能提供正温度系数和负温度系数的、严格定义的量,形成了此类电路的核心。由于基准源的精度与温度有关,提高精度必须降低温度系数。因此本文采用温度补偿及负反馈的方法,大大的降低了基准电压的温度系数,并且在宽电源电压幅度范围作用下,使其仍具有很好的电源抑制特性和很高的电源抑制比PSRR(Power-Supply RejecTION RaTIo)。

  带隙基准源原理

  基准是直流量,它与电源的关系很小,与温度和工艺有一定的关系。由于基准源的精度与温度有关,提高精度必须降低温度系数。采用温度补偿的方法,即在温度区域内找到一点,使得基准源的输出在该点的温度导数为零,只要此点选取合适,就能获得较小的温度系数。

  图1为带隙基准源的原理示意图。

  适用于宽电源电压幅度的高精度双极带隙基准电路,第2张

  图1 带隙基准源的原理示意图

  利用热电压VT的正温度系数与双极型晶体管B、E结电压VBE的负温度系数相互补偿,以减小温度漂移。其中VBE的温度系数在室温时大约为-2mV/°C。而热电压VT=KT/q,其温度系数在室温时大约为+0.086mV/°C。将电压VT乘以常数K以后与电压VBE相加,便可得输出电压VREF为:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第3张

  将式(1)两端同时对温度T求微分,并将VBE和VT的温度系数值代入,令等式值为零,就可求得K的值,它使得带隙基准电压的温度系数值在理论上为零。由于VT与电源值无关,而VBE受电源变化的影响极小,故VREF受电源的影响也很小。

  高精度带隙基准电路

  等效电路结构与分析

  图2为文本文介绍的一种双极带隙基准电路的等效电路图。

  适用于宽电源电压幅度的高精度双极带隙基准电路,第4张

  图2 带隙基准电路的等效电路图

  此带隙基准电路基本工作原理是通过负反馈,保证稳定的输出电压。在电路中,双极型晶体管Q2提供发射极偏压为VBE,由取样电阻R2上的电压mVREF产生了nVT,其中n/m=K。由以上分析知,选择适当K,可使两个电压的温度漂移相互抵消,即令:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第5张

  其中:?????

  适用于宽电源电压幅度的高精度双极带隙基准电路,第6张

  适用于宽电源电压幅度的高精度双极带隙基准电路,第7张

  将式(3)、(4)代入式(2),有:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第8张

  即理论值K≈26.23,从而由式(1)得到了在某一温度下温度系数为零的基准电压。当然由于不同工艺下的VBE的负温度系数有很大的差别,K的实际值略有不同。

  此电路中的运放与常规运放的不同之处在于其输入差分对尺寸不同,故亦可理解成为加入一失调电压。当电阻R2上的电压等于此失调电压时,运放处于平衡状态。当输出电压增加时,R2上的电压增加,差分信号增大,运放输出电压升高,输出电流减小以抑制输出电压的上升;同时,当输出电压减小时,差分信号减小,运放输出电压降低,输出电流增大以抑制输出电压的下降,从而达到稳定输出电压的目的。下文将作对此详细讨论。

  实际电路结构与分析

  图3为本文介绍的双极带隙基准电路的实际电路图。

  适用于宽电源电压幅度的高精度双极带隙基准电路,第9张

  图3 高精度带隙基准电路的实际电路图

  基准源中的运放AREF由四级组成,输入级为差分对输入,经过两级射随后,最后经过一级反向放大输出。晶体管Q7、Q8、Q9构成威尔逊电流源,作为差分对的有源负载,同时完成双端输入到单端输出的转换。威尔逊电流源具有大的动态内阻,并且输出电流受β的影响也大大减小,在设计中选用它使基准电压的温度系数有了极大改善。

  下面以电流关系来阐述此电路补偿原理。在图3中,用ixn表示电流,当x为C、B、E时,表示流经三极管Qn的集电极、基极、发射极的电流;当x为R时,表示流经电阻Rn的电流。通过分析可以得到:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第10张

  其中i B4、i E5 、i R4为定值,即i C6与i R5、i C4与i B1同方向变化。当该电路处于平衡态时,i C5也为定值,继而有:i B4 → i R4 → i B1 → i C1皆为定值。当温度降低时,有以下关系:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第11张

  由式(8)可以看出,当温度降低时,此电路通过负反馈可以使得输出基准电压保持稳定。 同理,当温度升高时,此电路通过负反馈也能使得输出基准电压保持稳定。

  设计该电路中运放输入差分对的两个晶体管发射结面积不对称,A10=6A11,则反向饱和电流的关系为IBES10=6IBES11。当IE10=IE11时,电路处于平衡状态。C1、C2用于相位补偿。由晶体管的原理可知:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第12张

  因此,为获得平衡状态,由以上条件可得:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第13张

  由于基准源中的电阻网络与运放形成负反馈,运放的差分输入电压(V- -V+ )由输出电压VREF的反馈网络决定。即平衡状态下,电阻R2两端的电压为VTLn6,故有:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第14张

  比较(1)和(8)可知:

  适用于宽电源电压幅度的高精度双极带隙基准电路,第15张

  K=23.06,跟理论值非常接近,其偏差是由于计算时没有考虑电阻的非线性温度系数所致。

  在实际电路中,为了提高基准电压的精确度,还对电阻R2和R3用调节脚进行调节。这样,即使实际工艺有一定偏差,也可以在一定范围内对基准电压进行调节。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2694879.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存