能量收集的概念已经出现超过 10 年了,然而在现实环境中,由环境能源供电的系统一直很笨重、复杂和昂贵。不过,有些市场已经成功地采用了能量收集方法,如交通运输基础设施、无线医疗设备、轮胎压力检测和楼宇自动化市场。尤其是在楼宇自动化系统中,诸如占位传感器、自动调温器甚至光控开关等,以前安装时通常使用的电源或控制配线,现在已经不需要了,取而代之的是,它们采用了局部能量收集系统。
能量收集系统的一个主要应用是楼宇自动化系统中的无线传感器。为方便说明,我们考虑一下美国能源使用的分布情况。建筑物每年都是能源生产的头号用户,约占总能耗的 38%,紧随其后的是交通运输和工业领域,各占总能耗的 28%。此外,建筑物可以进一步分成商用建筑和民用建筑,在这 38% 的能耗中,分别分得 17% 和 21%。而民用建筑 21% 的能耗数字还可以进一步划分,其中取暖、通风和空调 (HVAC) 约占民用建筑总能耗的 3/4。目前预计,从 2003 年到 2030 年,能源使用量将翻一番,依此推算,采用楼宇自动化系统可以节省多达 30% 的能源 [数据来源:“World Energy, Technology and Climate policy outlook (WETO)”,由欧盟多个研究机构联合撰写]。
类似地,一个采用能量收集方法的无线网络可以将一幢大楼中任何数量的传感器连接起来,以在非主要区域的大楼或房间中没人时,调节该区域的温度或关掉该区域的照明灯,从而降低 HVAC 和电力费用。此外,能量收集电子线路的成本常常低于布设电源线的成本或更换电池所需的日常维护成本,因此用收集的能量供电之方法,显然有经济收益。
不过,如果每个节点都需要自己的外部电源,那么很多无线传感器网络就失去了优势。尽管电源管理技术确实在持续发展,已经使电子电路能在给定电源情况下工作更长时间,但这是有限度的,而用收集的能量供电提供了一种补充方法。因此,能量收集通过将局部环境能源转换成可用的电能,成为一种给无线传感器节点供电的方法。环境能源包括光、温差、振动波束、已发送 RF 信号或能通过换能器产生电荷的任何能源。这些能源在我们周围到处都是,利用合适的换能器,如面向温差的热电发生器 (TEG)、面向振动的压电组件、面向太阳光 (或室内照明光) 的光伏电池等,可将这些能源转换成电能,甚至可以利用潮湿气体产生的电能。这些所谓的“免费”能源可用来自主地给电子组件和系统供电。
现在所有无线传感器节点都能以微瓦级平均功率工作,因此用非传统电源给它们供电是可行的。这导致了能量收集的出现,在使用电池不方便、不现实、昂贵或危险的系统中,可用能量收集提供的电力给电池充电、补充或代替电池。用收集的能量供电,还可以不再需要导线来供电或传送数据。此外,工业过程、太阳能电池板或内燃机产生的能量也可以收集起来使用,否则就浪费掉了。
能量收集应用的问题和特性
一个典型的能量收集配置或无线传感器节点 (WSN) 由 4 个方框组成 (参见图 1)。它们是:1) 环境能源;2) 换能器组件和给下游电子组件供电的电源转换电路;3) 将该节点连接到现实世界的检测组件和计算组件 (由微处理器或微控制器组成,处理测量数据并将数据储存到存储器中);4) 由短程无线单元组成的通信组件,实现与相邻节点及外部世界的无线通信。
环境能源的例子包括:连接到 HVAC 管道等发热源的热电发生器 (TEG) 或热电堆;或者连接到诸如窗玻璃等机械振动源的压电换能器。在热源情况下,一个紧凑型热电器件 (常称为换能器) 可将小的温差转换成电能。而在存在机械振动或压力的情况下,压电器件可用来将机械能转换成电能。
一旦电能产生出来,就可以由能量收集电路转换并调整为合适的形式,以给下游电子组件供电。因此,一个微处理器可以唤醒一个传感器,以获取读数或测量值,然后读数或测量值可由一个模数转换器进行处理,以通过一个超低功率无线收发器传送。
图 1:一个典型的能量收集系统或无线传感器节点的主要组成方框图
FREE ENERGY SOURCE:免费能源
ENERGY HARVESTER/MANAGER:能量收集器 / 管理器
SENSORS, A/D, uCONTROLLER:传感器、A/D、微控制器
WIRELESS TRANSMITTER/RECEIVER:无线发送器 / 接收器
有几种因素影响无线传感器节点能量收集系统的功耗特性。表 1 概述了这些因素。
表 1:影响无线传感器节点功耗的因素
当然,由能量收集源所提供的能量取决于它处于 *** 作状态的时间。因此,比较能量收集电源的主要衡量标准是功率密度,而不是能量密度。能量收集一般会遇到低的、可变的和不可预测的可用功率,因而通常采用了一种与能量收集器和一个辅助电能储存器相连的混合结构。收集器由于其无限的能量供应和功率不足而成为系统能源。辅助电能储存器 (一个电池或一个电容器) 可产生较高的功率,但储存的能量较少,它在需要的时候供电,其他情况下则定期从收集器接收电荷。所以,在没有可供收集功率的环境能量时,必须采用辅助电能储存器给 WSN 供电。当然,从系统设计人员的角度而言这将导致复杂程度的进一步增加,因为他们现在必须考虑这样一个问题“为了对缺乏环境能量源的情况下提供补偿,应在辅助储存器中存储多少能量?”究竟需要储存多少能量将取决于诸多因素,包括:
1. 缺乏环境能量源的时间长度
2. WSN 的占空比 (即数据读取和传输 *** 作必须具备的频率)
3. 辅助储存器 (电容器、超级电容器或电池) 的大小和类型
4. 是否可提供既能充当主能量源、同时又拥有充分剩余能量 (用于当其在某些特定时段内不可用时为辅助电能储存器充电) 的足够环境能量?
最先进和现成有售的能量收集技术 (例如振动能量收集和室内光伏技术) 在典型工作条件下产生毫瓦量级的功率。尽管这么低的功率似乎用起来很受限,但是若干年来收集组件的工作可以说明,无论就能量供应还是就所提供的每能量单位的成本而言,这些技术大体上与长寿命的主电池类似。此外,采用能量收集的系统一般能在电能耗尽后再充电,而这一点主电池供电的系统是做不到的。
正如已经讨论的那样,环境能源包括光、温差、振动波束、已发送的 RF 信号,或者其他任何能通过换能器产生电荷的能源。下面的表 2 说明了从不同能源可产生多少能量。
表 2:能源以及它们可产生多少能量
要成功设计一款完全独立的无线传感器系统,需要现成的节电型微控制器和换能器,并要求这些器件消耗最小和来自低能量环境的电能。幸运的是,低成本和低功率传感器及微控制器已经上市两三年左右了,不过只是在最近,超低功率收发器才投入商用。然而,在这一系列环节中,处于落后的一直是能量收集器。现有的能量收集器模块实现方案 (如图 1 所示) 往往采用低性能和复杂的分立型结构,通常包括 30 个或更多的组件。此类设计转换效率低,静态电流高。这两个不足之处均导致最终系统的性能受损。低转换效率将增加系统上电所需的时间,反过来又延长了从获取一个传感器读数至传输该数据的时间间隔。高静态电流则对能量收集源的输出能达到的最低值有所限制,因为它必须首先提供自己工作所需的电流,多出来的功率才能提供给输出。正是在能量收集器这个领域,凌力尔特公司最近推出的产品 LTC3109、LTC3588-1 和 LTC3105 使性能和简单性上提升到一个新水平。
这些能量收集 IC 所带来的新性能水平是采用分立式方案完全无法实现的。因此,它们由于能够收集非常低的环境能量而成为了推动能量收集系统制造商成长的“催化剂”。凭借这种性能水平,再加上换能器、微控制器、传感器和收发器经济合算的价位,使其市场接受度得以提升。这也是此类系统在全球范围的众多应用中受到大量关注的原因之一。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)