开关电源产品质量设计讲堂:攻克电压浪涌与电流浪涌难关

开关电源产品质量设计讲堂:攻克电压浪涌与电流浪涌难关,第1张

  为了防止开关电源开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成)系统中的高速开关电路存在的分布电感电容二极管蓄积电荷的影响下产生浪涌电压与噪声。文中通过采用RC或LC 吸收电路对二极管蓄积电荷产生的浪涌电压采用非晶磁芯和矩形磁芯进行磁吸收,从而解决了开关电源浪涌电流的产生以及抑制问题。

  引言

  开关电源的主元件大都有寄生电感与电容,寄生电容Cp一般都与开关元件或二极管并联,而寄生电感L通常与其串联。由于这些寄生电容与电感的作用,开关元件在通断工作时,往往会产生较大的电压浪涌电流浪涌

  开关的通断与二极管反向恢复时都要产生较大电流浪涌与电压浪涌。而抑制开关接通时电流浪涌的最有效方法是采用零电压开关电路。另一方面,开关断开的电压浪涌与二极管反向恢复的电压浪涌可能会损坏半导体元件,同时也是产生噪声的原因。为此,开关断开时,就需要采用吸收电路。二极管反向恢复时,电压浪涌产生机理与开关断开时相同,因此,这种吸收电路也适用于二极管电路。本文介绍了RC、RCD、LC等吸收电路,这些吸收电路的基本工作原理就是在开关断开时为开关提供旁路,以吸收蓄积在寄生电感中的能量,并使开关电压被钳位,从而抑制浪涌电流。

  RC吸收电路

  开关电源产品质量设计讲堂:攻克电压浪涌与电流浪涌难关,第2张

  图1 RC吸收网络电路

  图1所示是一个RC吸收网络的电路图。它是电阻Rs与电容Cs串联的一种电路,同时与开关并联连接的结构。若开关断开,蓄积在寄生电感中的能量对开关的寄生电容充电的同时,也会通过吸收电阻对吸收电容充电。这样,由于吸收电阻的作用,其阻抗将变大,那么,吸收电容也就等效地增加了开关的并联电容的容量,从而抑制开关断开的电压浪涌。而在开关接通时,吸收电容又通过开关放电,此时,其放电电流将被吸收电阻所限制。

  RCD吸收电路

  本文给出的RCD吸收电路如图2所示,它由电阻Rs、电容Cs和二极管VDs构成,其中电阻Rs也可以与二极管VDs并联连接。若开关断开,蓄积在寄生电感中的能量将通过开关的寄生电容充电,开关电压上升。其电压上升到吸收电容的电压时,吸收二极管导通,从而使开关电压被吸收二极管所钳位(约为1 V左右),同时寄生电感中蓄积的能量也对吸收电容充电。开关接通期间,吸收电容则通过电阻放电。

  开关电源产品质量设计讲堂:攻克电压浪涌与电流浪涌难关,第3张

  图2 RCD吸收网络

  采用RC和RCD吸收电路也可以对变压器消磁,而不必另设变压器绕组与二极管组成的去磁电路。变压器的励磁能量都会在吸收电阻中消耗掉。RC与RCD吸收电路不仅可以消耗变压器漏感中蓄积的能量,而且也能消耗变压器励磁能量,因此,这种方式同时降低了变换器的变换效率。

  由于RCD吸收电路是通过二极管对开关电压钳位,效果要比RC好,同时,它也可以采用较大电阻,但能量损耗也比RC小。

  LC吸收电路

  LC电路是由电容、电感、电阻等元件和电子器件组成的能够产生振荡电流或具有滤波作用的电路,由电感线圈L和电容器C相连而成的LC电路是最简单的一种LC电路。

  开关电源产品质量设计讲堂:攻克电压浪涌与电流浪涌难关,第4张

  图3 LC吸收网络

  LC吸收电路如图3所示,它由Ls、Cs、VDs1和VDs2构成。若开关断开,蓄积在漏磁或励磁等电感中的能量可通过VDs1经电容Cs放电,使吸收电容Cs电压反向,从而使变压器由电容电压消磁。这期间,输入电压与吸收电容的电压加到开关上的电压极性再次反向。一般情况下,LC吸收电路不消耗能量。

  结束语

  要提高开关频率,同时提高开关电源产品的质量,电压浪涌与电流浪涌问题必须重点考虑。本文是在分析了干扰产生机理以及经过大量实践的基础上,提出了这种行之有效的抑制措施。因此,要解决好浪涌问题,还要结合设计的实际,分析浪涌产生的机理,结合实际来设计浪涌吸收电路,以使开关电源的浪涌干扰降到最低点。


  驰骋电源设计,还看电子发烧友网2013电源技术研讨会!

   绿色电源设计大潮铺天盖地席卷而来,“降低损耗,提高效率”已成为业界亟待解决的课题。本次技术研讨会,我们关注到,在任何种类的电源设计,都必须有出 色的电源防护才能更安全可靠的工作,电路保护对每个电源工程师而言都至关重要;在电源设计中,电磁辐射需要ESD来进行防护,不过在另一个领域,电磁辐射 加以利用又成为一个全新市场的技术基础,那就是无线充电技术;无线充电现在的挑战是充电效率,而数字电源无疑是提升电源管理效率一个非常重要的手段,随着 各种系统的能效要求越来越高,数字电源变得越来越普及。高压交流输电可以有效提升能源传输和使用的成本,对于高压直流电是否也会如此?电源设计中,稳定可 靠的电源测试保障是必不可少的一步,您是否掌握最可靠并行之有效的电源测试方法?

   为顺应当前电子产业发展趋势,助力工程师,为各种设备电力开源节流。有鉴于此,电子发烧友网本着以“为各种设备电力开源节流”为主题,力邀ADI、德州 仪器、英飞凌美信罗姆IDT富士通凌力尔特、Dailog、Exar泰克、艾德克斯等厂商参与演讲与交流。

  我们将会探讨当 前电源技术热门应用领域(包括可穿戴电子设备、智能移动设备、无线充电、移动电源)的发展现状与技术趋势,以及结合电源管理(PMIC)应用开发在当前最 新技术,最具市场价值和适销对路的创新性产品。如果您想了解当前电源技术最新动态与设计策略,把握最新商机,这期技术研讨会绝对不容错过!
 

 

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2702188.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存