ROHM最新ACDC电源技术 同时实现功率因数改善与高效率

ROHM最新ACDC电源技术 同时实现功率因数改善与高效率,第1张

  2014年3月18日,上海

  1. 功率因数与功率因数改善电路PFC:Power factor correcTIon)

  功率因数是指是否将电力公司生产的电力毫无损耗地输送到电子设备的数值;效率是指是否将该电力毫无损耗地

  转换的数值。当交流电力的电压与电流的相位差为φ时,按功率因数=COSφ求得功率因数,当电压与电流没有相位差,即正弦波时功率因数为1。

  简单地说,单纯的电阻负载时,电压与电流波形不发生相位延迟,因此,功率因数为1(图1)。

  ROHM最新ACDC电源技术 同时实现功率因数改善与高效率,功率因数为1时的波形与电路例,第2张

   图1  功率因数为1时的波形与电路

  但是,在现代电子设备中,开关电源的应用广泛,为使输入的交流电压平滑,一般使用电容器(称为电容输入型整流滤波)。通过这种滤波用电容负载,只有在比滤波电容电压还高时输入交流电压才会流过,因此导通角变小,电流波形成为含有高频成分的非正弦波电流(图2)。

  ROHM最新ACDC电源技术 同时实现功率因数改善与高效率,高频电流时的波形和电路,第3张

 图2  高频电流时的波形和电路

  因此,即使消耗了相同功率,在电源侧也会流过瞬时大电流(比如功率因数为0.5时,与功率因数为1时相比,峰值电流高达2倍),电力公司针对这种含有高频成分的非正弦波电流,花费了额外发电和设备损坏事故的对策用的巨大费用。

  为防止这些问题的发生,世界各国对特定功率以上的设备实行高频电流限制,并反映在各国的国内法规及执行上。满足这些限制的手段之一是利用功率因数改善电路(PFC),将输入电流波形变为接近正弦波,从而抑制高频电流。

  作为这种功率因数改善的手段,一般采用使用了无源元件(电感)的无源方式和使功率元器件开关的有源方式。

  无源方式的电路结构简单,但难以满足更宽的输入电压范围,小型化也很难。与之相对的有源方式则可满足更宽的输入电压范围,有利于小型化(图3)。

  ROHM最新ACDC电源技术 同时实现功率因数改善与高效率,功率因数改善前后的电流波形比较,第4张

   图3 功率因数改善前后的电流波形比较

  这种有源方式的功率因数改善电路(PFC)从效率的角度看,因自身功耗而导致效率下降。尤其在具有待机模式的现代电子设备中尤为显著。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2704007.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存