任何太阳能电池板的一个重要特性是其可在一个相对恒定的工作电压 (VMP) 下实现峰值功率输出,这与照明水平无关 (见图 1)。LT3652 2A 电池充电器充分利用了这一特性,以通过实施输入电压调节来把太阳能电池板保持于峰值工作效率 (正待专利审议)。当可用的太阳能功率不足以满足一个 LT3652 电池充电器的功率要求时,输入电压调节电路将减小电池充电电流。这将降低太阳能电池板上的负载以把太阳能电池板电压维持在 VMP,从而最大限度地增加太阳能电池板的输出功率。这种实现峰值太阳能电池板效率的方法被称为最大功率点控制 (MPPC)。
图 1:太阳能电池板可在一个特定的输出电压 (VMP) 下产生最大的功率,这相对地独立于照明水平。LT3652 2A 电池充电器通过把太阳能电池板输入电压调节在 VMP 以最大限度地增加太阳能电池板的输出功率。
虽然 MPPC 可在低照度期间优化太阳能电池板的效率,但当功率级别很低时电池充电器的电源转换效率将变差,从而导致从太阳能电池板至电池的总功率传输效率下降。本文将说明怎样通过运用一种简单的 PWM 充电方法 (其在功率级别很低时强制电池充电器以突发脉冲的形式释放能量) 来改善电池充电器效率。
采用电流监视器状态引脚来指示低功率条件
LT3652 上的 /CHRG 电流监视器状态引脚负责指示电池充电电流的状态,并在这里用于控制 PWM 功能。该引脚在充电器输出电流大于 C/10 (即编程最大电流的 1/10) 时被拉至低电平,并在输出电流低于 C/10 时呈高阻抗状态。
在低照度期间,输入调节环路可把充电器的输出电流减小至 C/10 以下,从而导致 /CHRG 引脚变至高阻抗。该状态引脚的“状态变更”功能用于通过触发一个输入欠压闭锁 (UVLO) 电路 (其下降门限位于一个高于输入调节电压VIN(REG) 的太阳能电池板电压) 来停用 IC。作为针对充电器停用的响应,太阳能电池板电压将在 UVLO 迟滞范围内爬升,直至达到 UVLO 上升门限为止,此时以满功率重新使能充电器。充电器随后将提供充电电流,直到输入电压调节环路再次停用充电器为止。该循环不断地重复,从而产生一个由一系列高电流突发脉冲组成的充电器输出,这可在任何照明水平下最大限度地提高充电器的效率以及整个太阳能充电器系统的效率。
高效率锂离子电池充电器
图 2 示出了一款具低功率 PWM 功能的太阳能电池板至 3 节锂离子电池充电器。该充电器使用了一个 17V 输入调节电压 (针对“12V 系统”太阳能电池板的一种常用VMP),其采用VIN_REG 引脚上的电阻分压器 R4 和 R5 来设置。把一个典型 12V 系统太阳能电池板的工作电压保持在其 17V 额定 VMP 电压可产生接近 100% 的太阳能电池板效率,如图 3 所示。低功率 PWM 功能采用 M1、R6、R7 和 R8 来实现。如图 4 所示,增设 PWM 电路可显著在电池充电电流低于 200mA 时提高效率。
图 2:17V VMP 太阳能电池板至 3 节锂离子电池 (12.6V) 2A 充电器
图 3:典型“12V 系统”(VMP = 17V) 太阳能电池板效率
图 4:图 2 所示电路的效率
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)