摘要:介绍了一种自激式开关稳压电源设计,详细说明了开关电源的工作原理及各部分的功能.
开关电源是一种利用开关功率器件并通过功率变换技术而制成的直流稳压电源.它具有体积小、重量轻、效率高、对电网电压及频率的变化适应性强、输出电压保持时间长、有利于计算机信息保护等优点,因而广泛应用于以电子计算机为主导的各种终端设备、通信设备,是当今电子信息产业飞速发展不可缺少的一种电源.开关电源又被称为高效能节能电源,内部电路工作在高频开关状态,自身消耗的能量很低,一般电源效率可达80%左右,比普通线性稳压电源提高一倍.目前生产的无工频变压器式中,开关电源仍然采用脉冲宽调制器PWM或脉冲频率调制器PFM的原理.本文根据PWM原理,利用开关管TL431取样,将误差经光耦合放大,通过PWM来控制开关管的导通与截止时间(即占空比),使得输出电压保持稳定。
图1 开关电源的工作原理图
开关电源电路图如图2所示.在此功率转换电路中,采用单端反激式变换器,单端是因为其高频变压器的磁芯只工作在第一象限.按变压器的副边开关整流器二极管的接线方式不同,单端变换器可分为两种:正激式与反激式.原边主功率开关管与副边整流管的开关状态相反(开关管导通时,副边的整流二极管截止)称为单端反激式.当原边加到高电平激励脉冲使Q1导通,直流输入高频变压器的原边两端,此时因副边是上负下正,使整流二极管截止;当驱动脉冲为低电平使Q1截止,原边两端极性反向,使副边绕组两端变为上正下负,则整流二极管被正向导通,此后变压器副边的磁能向负载释放.因此单端反激式变换器只是在原边Q1导通时储存能量,当它截止时才向负载释放,故高频变压器在开关过程中,既起变压隔离作用,又是电感储能元件.
在交流电源的输入端接入的电磁干扰滤波器,由共模扼流圈L1、C2和C3构成,C2和C3的中点应接地,用来抑制共模干扰.C1用来滤波,滤除串模干扰,电容量较大.鉴于开关管BU508A在关断的瞬间,高频变压器的漏感会产生尖峰电压,利用C8、R3和D1组成钳位电路,C9的作用是滤除开关管集电极的尖峰电压,决定自动重启动频率,C9和R4一起对控制回路进行补偿,同时C9和R4还起原边快速复位的作用,能有效的保护开关管不被损坏。
图2 开关电源电路图
4.1 开关电源的开关控制部分
开关电源其核心是开关控制部分,主要工作过程是通过图2中B点和C点电压的高低来控制主功率开关管Q1导通和截止的时间(即占空比的大小).当Q1截止时A点为高电平,C5对Q1放电,使B点电位迅速提高,使开关管Q1基极电位高于发射极,因而Q1饱和导通,并对C5进行充电.而此时的电流为变压器原边电流与Q1导通时的电流之和,所以流经R5的电流值很大,C点电位升高,饱和导通使A点电位下降,Q1也就截止.
D2和D3作用是在Q1导通时,使C点电位不致很高,否则C5的放电时间过长,使Q1关断时间toff过大,而Q1导通时间ton保持不变,这样频率变低.若Q1导通时C点提升太高时,才将Q1变为截止,此时D2和D3正向导通,C点的电位降低,使得C5放电时间很短就能将使Vb>Vc,使toff也很小,因而可以使频率达到很高.
4.2 PWM调节部分
Q1导通时,绕组N2上正下负,C10吸收刚放电时的尖峰电压,防止二极管D10正向导通损坏,D10正向导通,使B点电位升高,从而使Q1更快饱和导通.同时Q2导通,再使Q3也导通,B点电压下降,原边线圈电流减小至截止.这时N2边为下正上负,D4和D5导通,Q4基极变为高电位,Q4导通,C点电位降低,截止时间变短,
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)