如何延长电池寿命,通过LDO、电压监控器和FET实现

如何延长电池寿命,通过LDO、电压监控器和FET实现,第1张

  不管是任何一种的电器我们都希望能延长它的电池寿命,这也是各位设计师们一直在研究的问题。今天小标就来讲讲一种可策略性地绕过低掉电线性稳压器(LDO)的技术。

  生成导轨

  使用LDO是从电池产生调节电压的常用方式。对于在完全充电时输出4.2V的单节锂离子(Li-ion)电池尤其如此。

  假设您要为电源电压范围在3V至3.6V之间的微控制器(MCU)生成3.3V,并选择TPS706生成该导轨。图1阐述了该电路

  图1:TPS706从电池调压3.3V

  尽管这个电路很简单,但它有一些限制。其中首要限制因素是掉电,这将导致LDO停止调压,并可能使MCU的供电电压超出规定范围。

  掉电的含义

  随着电池放电,锂离子电池的电压下降。图2所示为放电曲线的示例。

  

  图2:锂离子电池电压随时间推移下降

  当您记起输入电压接近稳压输出电压时,LDO有可进入压差的风险,这可能令人不安。在某一点上,电池电压将下降到很低电平,使得TPS706将不再能够调压3.3V。相反,输出电压将开始跟踪等于压差电压的差值的电池电压。

  当输出电流为50mA,输出电压为3.3V时,TPS706规定了典型的压差为295mV的电压。因此,一旦电池电压降至3.6V以下,LDO可能会进入掉电。图3提供了这类行为的一个示例。

  

  图3:TPS706进入掉电模式

  如图所示,一旦VIN下降到3.6V左右,VOUT开始下降。由于MCU供电范围的下限为3V,这令人不安 —— 掉电可能导致VOUT非常快速地降至3V以下。

  避免掉电

  规避这个问题的一个方法是在它进行掉电之前或进入掉电时绕过LDO。图4说明了此解决方法。

  

  图4:使用P-通道MOSFET来绕过LDO

  在该电路中,TPS3780是双通道电压检测器,通过SENSE1监视电池电压。如果电池电压应低于3.4V,则OUT1将P-通道MOSFET的栅极驱动为低电平。这使得电流(蓝色箭头)流经MOSFET的漏极 - 源极端子,而不是流经LDO的输入 - 输出端子(红色箭头)。由于MOSFET具有比LDO更低的导通电阻,因此输出电压将更紧密地跟踪输入电压。

  SENSE2监视输出电压。一旦输出电压低于3V(或MCU的电源范围底部),OUT2将置为低电平。该信号可将MCU置于复位模式。

  图5所未为未借助绕过MOSFET的电路的行为。

  

  图5:未绕过MOSFET的下降输入电压

  为了模拟电池,输入电压以1V/ms的速率下降。您可以看到,一旦输入电压达到3.4V,输出下降到3V就需要大约100ms。

  现在,我们来看一下使用绕过MOSFET的电路的行为,如图6所示。

  

  图6:绕过MOSFET的下降输入电压

  一旦输入电压降至3.4V以下,MOSFET就会导通。输出电压现在等于输入电压减去穿过MOSFET的电压降。因此,现在,输出达到3V需要近320ms。通过增强PMOS器件,输出电压比LDO在压差中更接近跟踪输入电压。换言之,外部PMOS的低导通电阻有助于延长电池寿命。

  实际上,电池电压将以较慢的转换速率下降。因此,使用旁路电路可显著延长工作时间。

  电流消耗

  当关闭电池时,您还必须考虑电路的电流消耗。见表1。

如何延长电池寿命,通过LDO、电压监控器和FET实现,如何延长电池寿命,通过LDO、电压监控器和FET实现,第2张

  表1:各种电路元件的电流消耗

  考虑这一消耗很重要,因为它有助于电池的整体放电。然而,幸运的是,其消耗极低,且额外的电路使电池的持续使用超过了增加的电流消耗。这对于需要更高负载电流的应用尤其如此。

  结论

  LDO是一种有效的低电流消耗方法,用于产生电池的导轨。然而,当电池电压开始下降时,掉电可能导致调压问题。MOSFET与LDO结合使用有助于避免此问题,以达到最长的电池寿命。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2706148.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存