使用Fly-buck™ 拓扑为低电压、低功耗工业应用供电

使用Fly-buck™ 拓扑为低电压、低功耗工业应用供电,第1张

有些工业应用中包含分支电路,需要小型电源为跨隔离边界的噪声敏感型电路供电。在 PLC数据采集以及测量设备等应用中,该隔离边界可提供抗噪功能。需要这种隔离式电源的典型分支电路包括隔离式 RS-232 和 RS-485 通信通道、线路驱动器、隔离式放大器传感器以及 CAN 收发器。此外,我们在其它应用中也发现了类似的电源需求,它们需要隔离式电源为 IGBT 提供栅极驱动器电源,而且在一些医疗应用中也需要隔离技术来确保安全性。

下图是这类系统电源需求的简单方框图。低电压轨(通常 3.3V 或 5V)适用于主系统电源。可将该电压轨用于生成隔离式低功耗电压轨,其通常需要低于 2W 的功耗,而且未经稳压。

 

使用Fly-buck™ 拓扑为低电压、低功耗工业应用供电,PowerLab 笔记: 如何使用 Fly-buck? 为低电压、低功耗工业应用供电,第2张

 

 

在这些系统中,非对称半桥或 fly-buck™ 拓扑可提供良好稳压的高效率解决方案。下图是 fly-buck 拓扑的简化原理图。这张图乍眼一看似乎很复杂,但进一步观察后会发现它其实很简单。一次侧电路由一个控制器、一个高侧 (S1) 及一个低侧 (S2) 电源开关、一个电感器和一个输出电容器 (Cr) 组成。

通常,控制器和 FET 整合在统一封装中,支持更高集成度的解决方案。该一次电路在外观和工作方式上与降压稳压器完全相同,其中 Cr 上的电压由控制器调节。二次电路的外观和工作方式则类似于反激转换器,其中可将二次绕组添加至电感器,提供隔离式输出电压。当 S2 导通时,Cr 上的电压加于电感器绕组。该电压经电感器耦合,并通过 D1 为输出电容器 (Co) 充电。输出电压值只取决于电感器的匝数比和 Cr 上的稳定电压。

 

使用Fly-buck™ 拓扑为低电压、低功耗工业应用供电,PowerLab 笔记: 如何使用 Fly-buck? 为低电压、低功耗工业应用供电,第3张

 

 

由于 Cr 的电压经过稳压,因此与大多数未稳压方案相比,该拓扑可保持相当严格的输出电压稳压。fly-buck 稳压降低的主要因素在于负载,并与电感器中的绕组阻抗、输出二极管正向电压以及电感器中泄漏电感有关。通常可通过进行少量预加载,将额定 5V 输出电压误差保持在 +/-5% 以内。

由于一次电路的同步属性,fly-buck 电源的效率也十分显著。以 PMP6813 为例,其可提供 1W 5V 的隔离电压,并支持超过 80% 的效率。这种高效率与集成型 FET 进行完美结合,可使 fly-buck 解决方案适合极小型封装。以上提到的 PMP6813 设计方案适合 10 毫米 × 20 毫米的电路板面积,而且设计采用经过 3kV 高压测试变压器

尽管我提供的实例是针对 5V 输出,但可通过选择具有不同匝数比的电感器便捷改变输出电压。此外,它还可生成 +/-15V 等隔离式分轨电源。一般来说,更高的输出电压也会产生更高的效率。PowerLab 库中加载了几种 fly-buck 设计方案,例如下面给出的实例。请及时查阅新博客内容,了解我们每月为 PowerLab 新增的更多参考设计。

PMP6813 — 5V 输入至 5V/1W 输出的隔离式 DIP 模块

PMP6838 — Flybuck 隔离式 SIP 模块 4.5~5.5V 输入电压、5V/1W

PMP7315 — Flybuck 18-30V 输入电压、24V/100mA 输出

PMP7942.1 — Flybuck 17~32V 输入电压、双 5V/0.25A、15V/0.1A

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2708127.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-16
下一篇 2022-08-16

发表评论

登录后才能评论

评论列表(0条)

保存