数据手册是元器件、 模块或系统性能的全面的、 经测试和经验证信息的完美信息库。 在电源单元(PSU)的情况下, 数据手册为工程师提供了大量的性能参数, 包括纹波和噪声、 效率、 调节精度、 隔离电压、 电磁排放量等。 所提供的信息的数量和详细程度为用户在任何给定应用中实现预期性能提供了极大的信心。
但另一个重要的性能参数 – 电源可靠性又如何呢?事实上,当今的知名制造商提供的电源单元(PSU)具有极长的寿命。其寿命在由可靠性标准(如MIL-HDBK-217或Telcordia)规定的测试条件下进行了精确预测。更重要的是,经验表明,除了这些严格定义的参数之外,高质量的电源单元PSU也提供超长寿命。
但是,系统设计人员仍然面临一个问题:在这些测试条件以外的条件下 *** 作时,他们如何自信地预测电源单元(PSU)的平均寿命?各种各样常见因素可能打破这些条件,如:热、冲击和振动、电源电压的瞬态波动、电解电容的老化等都可能引起过早失效。因此,数据手册的标准寿命额定值很少完全适用于真实世界的产品。
同时,无法控制最终产品的可靠性是难以接受的。品牌的声誉是一笔宝贵的财富。处置和维修的环境和费用成本也是一种浪费。
那么,系统设计工程师怎样才能自信地预估商用现货(COTS)电源单元的可靠性?而且,最大限度地提高信心水平的最有效的方法是什么?
制造商的可靠性数据的限制
最常用的表征一个新的COTS PSU的寿命的值是故障前平均时间(MTTF)或平均故障间隔时间(MTBF)值。故障前平均时间(MTTF)在恒定工作(环境)温度下通常为数千小时。
当然,故障前平均时间(MTTF)并没有给出从大量单元中随机抽取的任何单个单元的失效时间:MTTF是一个平均值。有的单元的寿命比额定MTTF值更长,有的则会更早失效。事实上,假定一个恒定的故障率在电子设备的 *** 作条件下是不切实际的假设,单个单元的寿命能够持续到MTTF值的概率只有37%。换句话说,故障前平均时间(MTTF)经过69%后,半数的单元将失效,如图1所示。
这是因为,具有恒定故障率的故障由一个指数因子表征,如以下等式所示,用于计算元器件在给定时间后没有发生故障的可能性:R(t) = e-λt
其中:
λ = 元器件的平均故障率
PSU制造商采用基于高度加速测试的模型以预测其产品的故障率。他们不能在正常 *** 作条件下运行PSU的测试,并等待观察故障,因为需要许多年的时间来收集统计显著性数据。因此,他们将其产品暴露于过高的温度、振动、电流和电压应力下,以便使它们迅速失效。
显然,需要一种合理的方法将加速测试的结果转换成数据手册中的MTTF值;有信誉的PSU制造商应认真核实并完善自己的方法,以确保其能反映用户的真实世界体验。
因此,到目前为止,我们也许可以信任由值得信赖的制造商指定的数据手册中的MTTF值。但由于它仅适用于很窄的工作条件,当在一系列竞争产品中进行选择时,最好仅将它作为一个比较工具。换句话说,MTTF适用于指示在类似条件下经过测试的不同PSU的相对寿命。
但是,任何给定应用中的MTTF真实值高度依赖于该应用的 *** 作条件。温度对寿命的影响最大,但寿命也受输入和输出电流和电压的绝对水平、这些参数的变化率、机械应力以及其他因素的影响。
因此,尽管MTTF值是基于一系列的“典型”和恒定 *** 作条件而计算的,但许多用户的应用将在以下条件下运行:
·充满变化
·与“典型”值不同
即使应用具有恒定的条件,这些条件也几乎不可能与数据手册的典型应用条件相同。
因此,当在任何给定的真实世界应用中估计故障率的时候,数据手册中的故障率和可靠性信息仅能提供有限的效用。电源系统设计人员必须设计适应其终端产品的最大可接受的故障率。不管该目标故障率是几乎为零(在任务关键型应用中)还是每10,000小时一次故障(在低成本消费产品的情况下),设计人员都必须具有高度信心,使现场的实际故障率至少达到最低目标。
如上所述,数据表中的MTTF不能提供如此高的信心水平,除非在规定的恒定 *** 作条件下。那么,电源系统设计人员怎样才能更自信地预测真实世界的故障率?答案是,部分是艺术,部分是科学。
科学是指有信誉的PSU供应商提供的附加数据集。例如,村田电源、Vicor和CUI等制造商都提供现场数据:声明返厂进行维修或更换的PSU故障率观察值。该声明基于对每个失效单元的检查,并提供故障原因分析。
该声明可以帮助PSU的特定型号的潜在用户:
通过审查它与现场故障率观察值之间的相关性来验证 MTTF的计算,如图2所示
确定可能引起大多数故障的特定 *** 作条件、应力或元器件
图2:PSU的寿命有三个阶段:“早期故障率”在第一阶段很高,持续时间约24小时。装运前预烧可避免这些“早期故障率”故障
(来源:CUI,“电源的可靠性注意事项”)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)