实现更高电压处理:确保GaN产品可靠性的综合方法

实现更高电压处理:确保GaN产品可靠性的综合方法,第1张

TI正在设计基于GaN原理的综合质量保证计划和相关的应用测试来提供可靠的GaN解决方案。氮化镓(GaN)的材料属性可使电源开关具有令人兴奋且具有突破性的全新特性—功率GaN。

高电子迁移晶体管(HEMT)。HEMT是一种场效应晶体管(FET),会使导通电阻会低很多。它的开关频率要比同等大小的硅功率晶体管要快。这些优势使得功率转换的能效更高,并且能够更加有效地使用空间。GaN可以安装在硅基板上,这样可充分利用硅制造能力,并实现更低的成本。然而,在使用新技术时,需要验证这项技术的可靠性。这份白皮书的主题恰恰是GaN器件质量鉴定。

 

简介

 

由于有超过30年的经验,并且经过不断改进,这个行业理所当然地认为硅功率晶体管具有很高的稳定性。这种长期的用户体验已经形成了一整套成熟的质量鉴定法方法体系;在这个方法体系中,可靠性和质量由运行标准化测试进行认证。这些测试来源于故障模式理解、激励能量和加速因子方面的深入研究,以及推测使用寿命、故障率和缺陷率的统计与数学框架的开发。由于数代硅产品可以在实际使用条件下,实现真正使用寿命内的正常运行,这个质量鉴定方法体系现在已经被证明是有效且实用的。

 

然而,GaN晶体管是近期才被开发出来的器件。更加昂贵的碳化硅基板上的RF GaN HEMT已经被广泛应用于无线基站内,并且其可靠性已经得到验证。虽然基于相似的基本原理,功率GaN HEMT在实现更高电压处理方面增加了更多的特性。它植根于硅基板上,并且使用与硅制造兼容的材料来降低成本。此外,出于故障安全的原因,它需要是一个增强模式 (e-mode),或者是常关器件。

 

主要有三种架构:

1. 与一个e-mode Si FET共源共栅的耗尽模式 (d-mode) 绝缘栅极GaN HEMT;2. e-mode绝缘栅极GaN HEMT;3. P型e-mode结栅极GaN HEMT。这三款器件会由于自身的原因,以及硅FET的影响而具有不同的故障模式,问题是如何鉴定它们的质量。基于硅的标准质量鉴定方法是一个有价值且具有里程碑意义的质量和可靠性鉴定方法,但不清楚的是,在器件使用寿命、故障率和应用相关性方面它对于GaN晶体管的效用如何。

德州仪器 (TI) 是半导体技术方面的行业领导者,在将可靠的半导体产品推向市场方面具有长期的经验,其中包括铁电随机访问存储器 (FRAM) 等非硅材料技术。在通过GaN相关质量鉴定方法体系和应用相关测试,把可靠的GaN产品推向市场方面,我们具有很大的优势。

 

标准质量鉴定方法体系

在鉴定硅功率器件质量方面,有两个标准化组织的质量鉴定方法体系得到广泛使用:联合电子设备工程委员会(JEDEC);和汽车电子协会(AEC)[2, 3, 4, 5]。这些标准指定了很多测试,其中可以分为三类:静电放电 (ESD)、封装和器件。

 

静电放电要求是一项强制的 *** 作标准,所以ESD标准不太可能会发生变化。封装测试与那些针对硅芯片、已经完成的测试相类似,需要找到导致故障的根本原因,以强调意外的故障机制。之前在硅芯片中使用的后端处理也同样用于GaN,在这个背景下,由于封装应力、结合表面相互作用等问题比较常见,所以这个相似性也就凸现出来。然而,这个器件类别是全新的,并因此具有特别的重要性。后面的段落检查了标准硅芯片质量鉴定方法体系,并且描述了如何将这一方法体系应用于GaN。

 

对于硅芯片质量鉴定来说,标准应力下的运行时间为1000h,结温至少为125°C。假定激活能量为0.7eV,指定温度加速因子为78.6 。这使得125°C结温下的1000h运行时间所受应力等于Tj = 55°C情况下,9年运行时间内所受应力。器件在它们的最大运行电压下进行质量鉴定。对于分立式功率FET,这通常选择为最小击穿电压技术规格的80%。这意味着,在质量鉴定测试条件下,没有内置的电压加速;电压加速只由温度实现。由于Tj在55°C以上,通常情况下高于75°C,这一点会对功率器件产生巨大影响。

 

这个标准还指定了3个批次的产品,每个批次有77个部件,不应在应力下出现故障。231个部件中的零故障标准意味着批内缺陷允许百分比 (LTPD) 的值为1。这表示,你有9成的把握地宣称,在推测的应力条件下,一个批次内有1%的部件是有缺陷的。换句话说,在Tj = 55°C的温度条件下运行9年,在最大工作电压上被偏置。最初地最大故障率 (FIT) 大约为50。Tj = 55°C下的FIT也是使用0.7eV的激活能量,从231个部件的零故障结果中得出。

 

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2709868.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-17
下一篇 2022-08-17

发表评论

登录后才能评论

评论列表(0条)

保存