LDO:LOW DROPOUT VOLTAGE LDO(是low dropout voltage regulator的缩写,整流器)
低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中。也就是输出电压必需小于输入电压。
优点:稳定性好,负载响应快。输出纹波小。
缺点:效率低,输入输出的电压差不能太大。负载不能太大,目前最大的LDO为5A(但要保证5A的输出还有很多的限制条件)
具有很多种拓朴结构,如BUCK,BOOST,等。
优点:效率高,输入电压范围较宽。
缺点:负载响应比LDO差,输出纹波比LDO大。
DC/DC和LDO的区别是什么?
DC/DC转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成。DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。根据需求可采用三类控制。PWM控制型效率高并具有良好的输出电压纹波和噪声。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。
DC-DC,(简述原理)
其实内部是先把DC直流电源转变为交流电电源AC。通常是一种自激震荡电路,所以外面需要电感等分立元件。
然后在输出端再通过积分滤波,又回到DC电源。由于产生AC电源,所以可以很轻松的进行升压跟降压。两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。
对比:
1、DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。
2、LDO:低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流。它的外围器件也很少,通常只有一两个旁路电容。新型LDO可达到以下指标:30μV输出噪声、60dBPSRR、6μA静态电流及100mV的压差。
LDO简述原理:
线性稳压器能够实现这些特性的主要原因在于内部调整管采用了P沟道场效应管,而不是通常线性稳压器中的PNP晶体管。P沟道的场效应管不需要基极电流驱动,所以大大降低了器件本身的电源电流;另一方面,在采用PNP管的结构中,为了防止PNP晶体管进入饱和状态降低输出能力,必须保证较大的输入输出压差;而P沟道场效应管的压差大致等于输出电流与其导通电阻的乘积,极小的导通电阻使其压差非常低。当系统中输入电压和输出电压接近时,LDO是最好的选择,可达到很高的效率。所以在将锂离子电池电压转换为3V电压的应用中大多选用LDO,尽管电池最后放电能量的百分之十没有使用,但是LDO仍然能够在低噪声结构中提供较长的电池寿命。
便携电子设备不管是由交流市电经过整流(或交流适配器)后供电,还是由蓄电池组供电,工作过程中,电源电压都将在很大范围内变化。比如单体锂离子电池充足电时的电压为4.2V,放完电后的电压为2.3V,变化范围很大。各种整流器的输出电压不仅受市电电压变化的影响,还受负载变化的影响。为了保证供电电压稳定不变,几乎所有的电子设备都采用稳压器供电。小型精密电子设备还要求电源非常干净(无纹波、无噪声),以免影响电子设备正常工作。为了满足精密电子设备的要求,应在电源的输入端加入线性稳压器,以保证电源电压恒定和实现有源噪声滤波。
一、LDO的基本原理低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT(PNP晶体管,注:实际应用中,此处常用的是P沟道场效应管)、取样电阻R1和R2、比较放大器A组成。
图1-1低压差线性稳压器基本电路
取样电压Uin加在比较器A的同相输入端,与加在反相输入端的基准电压Uref(Uout*R2/(R1+R2))相比较,两者的差值经放大器A放大后.Uout=(U+-U-)*A注A為比較放大器的倍數,)控制串联调整管的压降,从而稳定输出电压。
当输出电压Uout降低时,基准电压Uref与取样电压Uin的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。
相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。
应当说明,实际的线性稳压器还应当具有许多其它的功能,比如负载短路保护、过压关断、过热关断、反接保护等,而且串联调整管也可以采用MOSFET。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)