eCos嵌入式 *** 作系统构建

eCos嵌入式 *** 作系统构建,第1张

 

  嵌入式可配置 *** 作系统eCos(Embedded Configureable OperaTIng System)的特点是可配置性、可裁减性、可移植性和实时性。它的一个主要技术特色就是功能强大的配置系统,可以在源码级实现对系统的配置和裁减。与Linux的配置和裁减相比,eCos的配置方法更清晰、更方便;且系统层次也比Linux清晰明了,移植和增加驱动模块更加容易。正是由于这些特性,eCos引起了越来越多的关注,同时也吸引越来越多的厂家使用eCos开发其新一代嵌入式产品。

  eCos现在由Red Hat维护,可支持的处理器包括:ARM、StrongARM、XScale、SuperH、Intel X86、PowerPC、MIPS、AM3X、Motorola 68/Coldfire、SPARC、Hitachi H8/300H和NEC V850等。

  1 eCos的层次结构

  eCos采用模块化设计,由不同的功能组件构成,eCos系统的层次结构如图1所示。

  这种层次结构的最底层是硬件抽象层(Hardware AbstracTIon Layer),简称为HAL,它负责对目标系统硬件平台进行 *** 作和控制,包括对中断和例外的处理,为上层软件提供硬件 *** 作接口。只需提供新硬件的抽象层,就可以将整个eCos系统包括基于eCos的应用移植到新的硬件平台上。

  2 构建eCos系统

  构建eCos系统首先要搭建自己的硬件抽象层,然后创建驱动程序,之后就可以编制应用程序了。

  3 硬件抽象层的移植

  硬件抽象层分为三个不同的子模块:体系结构抽象层(Architecture HAL)、变体抽象层(Variant HAL)和平台抽象层(Platform HAL)。

  体系结构抽象层。eCos所支持的不同处理器系列具有不同的体系结构,如ARM系列、PowerPC系列、MIPS系列等。体系结构抽象层对CPU的基本结构进行抽象和定义,此外它还包括中断的交付处理、上下文切换、CPU启动以及该类处理器结构的指令系统等。

  变体抽象层指的是处理器在该处理器系列中所具有的特殊性,这些特殊性包括Cache、MMU、FPU等。eCos的变体抽象层就是对这些特殊性进行抽象和封装。

  硬件抽象层的这三个子模块之间没有明显的界线。对于不同的目标平台,这种区分具有一定的模糊性。例如,MMU和Cache可能在某个平台上属于体系结构抽象层,而在另一个平台上则可能属于变体抽象层的范围;再比如,内存和中断控制器可能是一种片内设备而属于变体抽象层,也可能是片外设备而属于平台抽象层。

  eCos的移植通过这三个子模块来完成,即平台抽象层的移植、变体抽象层的移植和体系结构抽象层的移植。对一个新的体系结构来说,其系统结构抽象层的建立相对来说比较困难。eCos支持大部分当前广泛使用的嵌入式CPU,已具有了支持各种体系结构的硬件抽象层。因此,eCos的移植很少需要进行体系结构抽象层的编写。

  4 平台抽象层的移植

  一般来说,进行eCos开发时,移植的主要工作在于平台抽象层,这是由于eCos已实现了绝大多数流行嵌入式CPU的体系结构抽象层和变体抽象层。平台抽象层主要完成的工作包括:内存的布局、平台早期初始化、中断控制器以及简单串口驱动程序等。

  构建一个新的平台系统,最简单的方法是利用eCos源码提供的具有相同体系结构和CPU型号的参考平台硬件抽象层,将其作为模板,复制并修改所有与新平台相关的文件。若eCos没有这样的平台,则可用另一种体系结构或CPU型号的类似硬件抽象层作为模板。比如,eCos提供了以三星公司ARM CPU S3C4510b为核心的平台SNDS4110,当需要移植eCos到ARM CPU S3C44B0上时,这将是一个很好的起点。

  移植工作最好是从RedBoot开始,实现的第一个目标是使RedBoot运行在新平台上。RedBoot是eCos自带的启动代码,它比eCos要简单,没有使用中断和线程机制,但包含了大部分最基本的功能。

  建立目标平台的RedBoot通常按以下步骤进行(以构建S3C44b0的新平台为例)。

  ① 复制eCos源码中选定的参考平台,根据需要对目录及文件更名。更名的主要内容有:新平台的目录名、组件定义文件(CDL)、内存布局文件(MLT)、平台初始化的源文件和头文件

  ② 调整组件定义文件(CDL)选项。包括选项的名字、实时时钟/计数器、CYGHWR_MEMORY_LAYOUT 变量、串口参数以及其他的一些选项。

  ③ 在顶层ecos.db文件中加入所需要的包,并增加对目标平台的描述。在最初,该目标平台的入口可以只包含硬件抽象层包,其他硬件支持包以后再加入。经过修改后,就可在eCos配置程序中选择新的平台进行配置。

  ④ 修改include/pkgconf中的内存布局(MLT)文件。按照新的硬件平台内存布局修改MLT文件。MLT文件对应每种启动类型有三个不同后缀的文件:.h文件以及.ldi文件和mlt文件。手工修改时只需修改.h文件和.ldi文件,并保证两个文件同步修改。修改的主要内容有ROM的起始地址、ROM的大小、RAM的起始地址和RAM的大小。

  ⑤ 修改平台的io宏定义。在include/plt_io.h文件中完成对平台的各种IO宏定义,包括各种CPU的系统配置寄存器、内存配置寄存器、串口配置寄存器、LCD配置寄存器、以太网配置寄存器等的I/O地址。

  ⑥ 修改平台的Cache代码。在include/hal_cache.h文件中修改有关Cache的宏定义。在开发初期,最好先将Cache关闭,等移植稳定后再打开。

  ⑦ 实现简单的串口驱动程序。串口的初始化、接收和发送在src/hal_diag.c文件完成。主要的函数如下:

  cyg_hal_plf_serial_init_channel(),完成对某个串口的具体初始化工作;

  cyg_hal_plf_serial_putc(),从串口发送一个字符;

  cyg_hal_plf_serial_getc(),从串口接收一个字符;

  cyg_hal_plf_serial_getc_nonblock(),以无阻塞的方式接收一个字符,即缓冲区中无数据时立即返回;

  cyg_hal_plf_serial_isr(),串口中断服务程序;

  cyg_hal_plf_serial_init(),调用cyg_hal_plf_serial_init_channel()函数初始化各串口,并向内核注册串口中断服务程序、串口的读写例程和配置例程。

  ⑧ 修改或增加平台初始化程序。平台初始化在3个文件文件中完成:src/s3c44b0_misc.c、include/hal_platform_setup.h和include/hal_platform_ints.h。

  hal_platform_ints.h完成系统的中断宏定义。在不同的平台中设备数量和类型不同,中断的译码方式也不一致,需要根据具体情况作出调整。

  hal_platform_setup.h主要完成系统硬件的初步配置,这里一般要在看门狗和中断关闭后,配置系统时钟频率、ROM和RAM的初始化参数。

  s3c44b0_misc.c文件完成目标板的进一步初始化、中断处理、延时例程和 *** 作系统时钟设置。

  经过以上修改,底层的平台抽象层就基本完成了,这时可用eCos的配置工具生成RedBoot进行测试

  RedBoot测试成功后,说明平台已经能正确完成初始化 *** 作,且串口驱动也能正常工作,接着要完成中断和Cache等测试工作。可利用一些多线程的小程序测试,检测时钟配置是否正确,同时也检测了中断能否正常工作。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2713157.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-17
下一篇 2022-08-17

发表评论

登录后才能评论

评论列表(0条)

保存