一种高可靠性的频率测量系统

一种高可靠性的频率测量系统,第1张

  提出并研制了一种高可靠性、高精度、使用简单且便于维护的频率测量系统,该系统用于电力电子测量领域。其硬件系统以嵌入式PC104计算机为测控平台,软件系统以LabWindows/CVI为开发平台,采用测周期法,依据频率大小选用不同的基准频率。经实际测试证实,该设计满足精度和实时性的要求,检测效率高,便于 *** 作与维护。该系统亦可用于其他要求高精度频率测量的领域中。

  1 引言

  频率是电力电子系统中1个基本的物理量,其测量问题在工程应用中非常重要。通常的测量方案是选用单片机或可编程逻辑器件。然而,在某些特殊场合,工作环境恶劣,要求测量精度高、可靠性强,使用常规的方案难以达到要求,或成本过高。本文提出了一种基于PC104测控计算机的频率测量系统,依据初步测试得到的待测频率大小选用不同的基准频率,测量精度达到0.2%,且实现了同时测量多路信号的频率。

  2 总体设计

  交变信号的频率是指单位时间内信号周期性变化的次数,即发fx =N/t,可见测量fx须将N或t作为基准,对另一个量进行测量[1]。基本的测量频率方法有两种:一种是测频法,由测量电路给出标准闸门信号t =Tr,测出待测信号在一定的时间间隔Tr内重复变化次数N, 得被测信号的频率为;另一种方法是测周期法,由测量电路提供标准频率信号fr,以被测信号的周期作为闸门,测出在一个被测信号周期内标准信号fr的个数N,得到被测信号的频率为。两种方法均存在计数器的±1量化误差,测频法的相对误差,测周期法的相对误差。前者fx位于分母,其值越大误差越小,因此对于高频信号有较高的精度,而后者fx位于分子,值越小误差越小,对低频信号的测量精度较高。本文以测周期法为原理,提出的测频方案如图1所示。以PC104测控计算机为硬件平台,设计调理模块对信号进行调理,通过PC104总线输入到 *** 作系统平台上,由数据处理算法进行处理,并在液晶显示器上显示。

一种高可靠性的频率测量系统,第2张
 

图1 测频方案示意图


 

  3 硬件设计

  本文以PC104测控计算机为硬件平台,选用的功能模块有DMM-32X-AT、OMM-XT和GPIO-MM-XT,可以实现多路频率信号的同时测量。PC104与标准台式PC(PC/AT)体系结构完全兼容,并且具有结构紧凑,体积小,功耗低,使用温度范围宽(-45℃~85℃),可靠性高(单个模块MTBF》20万h),抗恶劣环境,坚固耐用等优点,从而保证了产品的生命周期[2-3]。

一种高可靠性的频率测量系统,第3张

  对多路待测频率信号进行分类,将存在先后测试顺序的频率信号共用一组检测电路进行调理,利用多路开关实现信号之间的切换。在测量过程中,实际输入信号存在不确定性及抖动等问题,为了提高测量精度,首先对待测信号进行预处理,通过滤波器滤去高频干扰和低频漂移信号,接着进行线性放大,再经过零比较器整形为矩形波信号,最后通过双稳态电路输入PC104功能模块卡。

  传统的测量周期原理框图如图2所示。在待测频率的1个周期中,高电平时间计数器闸门打开进行计数,低电平时关闭,通过测量出高电平时间计算出信号周期。但是如果遇到干扰,待测频率上升沿和下降沿轻微变化时, 计数就会产生一个脉冲的读数误差。同时,对于占空比未知的信号,采用此原理无法测出准确频率。

  因此,为减小误差,并且能测量占空比未知的信号,所提出的测频方案首先将待测信号分频,使测频时间为待测频率信号周期的整数倍,而与占空比无关,如图3所示。另外对于高频和低频信号,采用不同的分频系数,以提高测量精度。对于1kHz以下的信号进行二分频,1kHz以上的信号进行四分频。

一种高可靠性的频率测量系统,第4张
图3改进的测频方法原理框图
 

一种高可靠性的频率测量系统,第5张
图4:硬件电路图

  硬件电路原理图如图4所示。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2713185.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-17
下一篇 2022-08-17

发表评论

登录后才能评论

评论列表(0条)

保存