嵌入式多路信号数据采集系统实现方案

嵌入式多路信号数据采集系统实现方案,第1张

  现代数据采集技术的发展是建立在新型采集系统软硬件平台性能提高的基础之上的。具有强大功能的32位微控制器在一些高端仪器仪表中得到了广泛的应用,而将GPRS无线传输模块嵌入其中,将采集到的数据以无线的方式接入Internet,实现远程监控,非常适合工作人员在比较恶劣的环境下或者需要对多种参量进行采集时使用。而高性能微处理器的应用也极大提高了数据采集的精度和速度。

  1 系统整体方案

  整个远程多路数据采集系统如图1所示。当无线终端成功连接到互联网后,采集终端将传感器采集到的数据经放大滤波后发送到ARM微控制器,经过A/D转换以及相关处理后,通过RS232口将数据发送到GPRS无线终端,GPRS无线终端又将这些数据打成一个个的IP包,经GPRS空中接口接入无线网络,并由移动通信服务商转接到Internet,最终通过各种网关和路由到达统一的远程数据处理中心,数据中心接收数据并对数据做后续处理。

  

嵌入式多路信号数据采集系统实现方案,远程多路数据采集系统,第2张

 

  远程数据中心也可以发送数据信息(各种命令及诊断信息)到无线数据采集模块,通过GPRS终端上的RS232接口输出到ARM微控制器上,采集终端在接收到远程数据中心的信息后,进行解码并执行相应的 *** 作,以实现对采集现场的控制。

  GPRS无线终端嵌入了TCP/IP协议和UDP协议(用户可选),本系统采用TCP/IP协议,实际上GPRSDTU上实现的协议栈是TCP/IPOverPPP。

  2 硬件组成

  2.1 传感器及放大器

  理论上,该系统可以同时进行16路数据的采集,但在实际的调试中,只选用了2路来做模拟。

  一路选用温度传感器,表面/液体热电偶NR281530,获取实时现场的温度,另一路采用压力传感器,PPM241BY油井专用型压力传感器,此系统在油田油井中具有较好应用。

  在前端信号处理单元,由于各种传感器的输出参数不同,输出信号不仅电平低、内阻高,而且有共模电压以及现场恶劣环境的影响,因此,在选用放大芯片时要综合考虑以上因素。选取常用的MCP6S2X可编程增益放大器对原始信号进行放大,OP07CP做后续滤波芯片。

  2.2 微处理器

  微处理器是系统工作的核心,其性能的好坏直接决定了数据采集系统性能的优劣。基于本采集系统对数据实时性和精度的要求,以及易 *** 作性方面的考虑,选择32位的ARM7系列处理器,它具有以下特点:

  ?体积小、低功耗、低成本、高性能;

  ?支持Thumb(16位)/ARM(32位)双指令,能很好兼容8位/16位器件;

  ?大量使用寄存器,指令执行速度快;

  ?指令长度固定;

  ?寻址方式灵活简单,执行效率高

  本系统采用PHILIPS公司的单片32位微控制器LPC2134,它是基于一个支持实时仿真和跟踪的16/32位ARM7TDMI2STMCPU,含有128KB的FLASH,该存储器用作代码和数据的存储。

  LPC2134拥有两个异步串行口UART0和UART1,本系统中将UART0与GPRS终端相连,实现数据传输。它采用16字节收发FIFO,内置波特率发生器,包含使能实现软件控制的机制。

  硬件SPI接口是一个同步、全双工串行接口,最大数据位速率为时钟速率的1/8,可配置为主机或从机。本系统中SPI接口作为主机,根据不同的中断,控制多个从机,包括可编程增益放大器MCP6S2X,使用SPI总线访问SD卡,以及控制开发板上的数码管显示。

  A/D转换器是2个8路10位逼近式模/数转换器,测量范围是0~313V,10位转换时间大于或等于2144μS,一个或多个Burst转换模式。

  2.3 GPRS终端

  GPRS终端选用的是南京傲屹电子有限公司的AYG285C,它是采用GPRS模块专为工业集成设计的,在温度范围、震动、电磁兼容性和接口多样性等方面均采用特殊设计,保证了恶劣环境下的工作稳定性,基于GPRS公网的数据传输具有通信范围广,传输稳定可靠等特点。通过按键可以进行模块参数设置或者进行网络数据通信,串口波特率在300~115200bps可调,校验位可选:无校验,奇校验,偶校验。支持协议PPP、IP、TCP、UDP、DNS、PING的客户端功能。另外,电源、工作状态有LED指示,方便现场查看MODEM运行情况。

  3 系统软件实现

  3.1 μC/OS2Ⅱ嵌入式 *** 作系统

  当需要进行多任务处理和调度时,一个嵌入式实时 *** 作系统就必不可少。为此系统中采用源码公开的μC/OS2Ⅱ *** 作系统,它具有执行效率高、占用空间小、实时性能优良以及可扩展性强等特点,最小内核可编译至2K字节。

  μC/OS2Ⅱ的移植需要满足以下要求:

  ?处理器的C编译器可以产生可重入代码;

  ?可以使用C调用进入和退出临界区代码;

  ?处理器必须支持硬件中断,并且需要一个定时中断源;

  ?处理器需要能够容纳一定数据的硬件堆栈;

  ?处理器需要有能够在CPU寄存器与内核和堆栈交换数据的指令。

  本系统使用的LPC2134ARM7处理器满足以上所有条件,因此可以对其进行移植。根据μC/OS2Ⅱ的要求,移植μC/OS2Ⅱ到一个LPC2134ARM7体系结构上需要提供2个或3个文件:OSCPU.H(C语言头文件)、OS-CPU-C.C(C程序源文件)及OS-CPU-A.ASM(汇编程序源文件)。

  芯片复位后,系统初始化流程如图2所示。

  

嵌入式多路信号数据采集系统实现方案,第3张

 

  3.2 接口程序及SD卡驱动的实现

  在实时内核下,接口程序读取A/D采样数据的方法通常有三种:程序延时法、ADC转换完毕时产生中断法和程序循环等待的方法。其中循环等待的方法CPU开销小,不需要中断服务,比较适合嵌入式系统中采用。

  循环等待A/D读取数据的伪代码如下:

  

嵌入式多路信号数据采集系统实现方案,第4张

 

  之间通过串口相连,采集数据先通过开发板串口UART0发送到无线数据终端AYG285C的缓冲区,然后缓冲区将数据打成一个个数据包,通过GPRS网络发送到远程数据处理中心。因此,在μC/OS2Ⅱ下LPC2134的UART底层接口驱动显得尤为重要。

  

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2713835.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-17
下一篇 2022-08-17

发表评论

登录后才能评论

评论列表(0条)

保存