2018人工智能发展趋势解析!

2018人工智能发展趋势解析!,第1张

由 Demi 于 星期四, 2018-09-13 15:51 发表

虽然,现在还存在很多“伪人工智能”,不过,人工智能是未来的发展趋势。2018年我们需要关注AI的相关领域,因为变革正在慢慢来临,以下,让我们来看看人工智能五个不断变化的趋势,在不久的将来它们或将成为现实。

1、不依赖程序命令的学习模型改进

机器学习旨在使计算机能够从数据中学习并在不依赖于程序中命令的情况下进行改进。这种学习最终可以帮助计算机构建模型,例如用于预测天气的模型。这里,我们介绍了一些利用机器学习的常见应用程序:

a.财务应用
随着金融科技创业公司挑战现有企业,金融业正在迅速发展。这些现有企业中的许多人主要依靠传统的低效方法来提供标准化金融产品的咨询和业务。人工智能的进步正在通过引入自动化咨询改变这一领域。机器学习模型也取代了传统的预测分析方法来衡量市场趋势。

现在,机器学习也帮助金融公司预防金融欺诈。而且,还可以提高信用评级的准确性,并改善贷款机构的风险管理。

b.医疗应用
机器学习和大数据可以利用大量潜在医疗数据,通过基于机器学习模型构建的新应用程序可以帮助识别疾病并提供正确的疾病诊断。机器学习还可以帮助人类进行基因测序、临床试验、药物发现和研发以及流行病暴发的预测。

基于AI的系统还帮助医院改善其运营工作流程和数据管理。值得关注的是,医疗保健专业人员在阅读剂量说明或诊断数据时也会犯错误。具有图像识别和光学字符识别功能的智能AI系统可以对这些数据进行双重检查,并确保减少此类错误。

c.工业应用
机器学习算法支持涵盖整个制造生命周期的许多应用程序,包括产品设计、生产计划、生产优化、分配、现场服务和回收。现在,有几个行业正在实施基于人工智能和物联网的解决方案,并在其孤立和分散的SCADA(监控和数据采集)解决方案之上实现更高的协同效应。

此外,机器人和自动化机器的使用对于制造业来说并不陌生。基于物联网的先进系统现在推动了工厂设备和机器的预防性维护和维修,使用基于AI的技术优化供应链运营也正在不断发展。

d.AIOps平台
我们大多数人都目睹过IT运营的流程设置,其中IT从业者经常负担过重,每天处理数千个事件。这些分析系统无法利用IT运营数据的真正潜力,这就是为什么要转向开发有更高运营能力的智能系统。AIOps中的高级AI算法可以自动化分析和关联事件数据的过程,此外,AIOps可以使用实时重复删除,黑名单和关联事件馈送的算法来降低此类事件的频率。

2、用自然语言处理简化人机交互

自然语言处理(NLP)是人工智能的一个快速发展的分支,该领域专注于分析和理解人类语言。基于NLP的应用程序通过理解语音、上下文、方言和发音以及更细微的差别来与人类交互。让我们来看看以NLP和基于AI的技术的发展趋势:

a.客户服务类聊天机器人
NLP可以支持众多真实的客户服务应用程序,在这些应用程序中,通常是在高度紧张的工作条件下,人们必须处理常规客户查询。基于NLP的聊天机器人可以通过提供更高的效率,减少等待时间,标准化文档更好地解决客户查询来改善客户服务。

b.虚拟助手
AmazonEcho、Alexa、Cortana、Google智能助理和Siri是NLP进入消费领域的一些最著名的例子。通过了解人类语音请求,AI技术正在改变我们与机器交互的方式。虚拟助理有可能打破我们传统的广告业务模式,并促使我们做出购买决策。

c.招聘门户网站
基于NLP的招聘门户网站正变得越来越普遍。这些网站帮助企业处理大规模招聘,人力资源经理需要在这些招聘中分发成千上万的简历。NLP可以通过扫描大量的工作申请并将其与招聘标准相匹配,迅速找到候选人。与过去的门户网站不同,这些门户网站不需要依赖关键字。

3、通过情感分析增强客户体验

利用情感分析的应用程序可以帮助企业更好地了解客户的需求,此类应用程序可以分析众多社交媒体渠道,以改善品牌的社交倾听。

随着情绪分析的不断发展,未来虚拟个人助理和情感感应可穿戴设备可能会理解我们的情绪状态和偏好。这些系统将帮助营销部门为客户提供情境化和个性化体验。根据TracTIca的数据,到2025年,类似软件工具的全球收入将达到38亿美元。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2716215.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-17
下一篇 2022-08-17

发表评论

登录后才能评论

评论列表(0条)

保存