自举电路工作原理和自举电阻和电容的选取

自举电路工作原理和自举电阻和电容的选取,第1张

【导读】在一些低成本的应用中,特别是对于一些600V小功率的IGBT,业界总是尝试把驱动级成本降到最低。因而自举式电源成为一种广泛的给高压栅极驱动(HVIC)电路供电的方法,原因是电路简单并且成本低。


自举电路工作原理


如下图自举电路仅仅需要一个15~18V的电源来给逆变器的驱动级提供能量,所有半桥底部IGBT都与这个电源直接相连,半桥上部IGBT的驱动器通过电阻Rboot和二极管VF连接到电源Vb上,每个驱动器都有一个电容Cboot来缓冲电压;


自举电路工作原理和自举电阻和电容的选取,6.jpg,第2张


当下管S2开通使Vs降低到电源电压Vcc以下时,Vcc通过自举二极管和自举电阻Rboot对自举电容Cboot进行充电,在自举电容两端产生Vbs悬浮电压,支持HO相对Vs的开关。随着上管S1开关,Vs高压时自举二极管处于反偏,Vbs和电源Vcc被隔离开。


自举电容的选取


当下管S2导通,Vs电压低于电源电压(Vcc)时自举电容(Cboot)每次都被充电。自举电容仅当高端开关S1导通的时候放电。自举电容给高端电路提供电源(VBS)。首先要考虑的参数是高端开关处于导通时,自举电容的最大电压降。允许的最大电压降(Vbs)取决于要保持的最小栅极驱动电压。如果VGSMIN最小的栅-源极电压,电容的电压降必须是:


自举电路工作原理和自举电阻和电容的选取,1663937157370262.png,第3张


其中:


Vcc=驱动芯片的电源电压;

VF=自举二极管正向压降;

Vrboot=自举电阻两端的压降;

Vcesat=下管S2的导通压降


计算自举电容为:


自举电路工作原理和自举电阻和电容的选取,1663937144245983.png,第4张


其中:


QTOT是电容器的电荷总量。


自举电容的电荷总量通过等式4计算:


自举电路工作原理和自举电阻和电容的选取,1663937124258464.png,第5张


下表是以IR2106+IKP15N65H5(18A@125°C)为例子计算自举电容推荐:


自举电路工作原理和自举电阻和电容的选取,10.jpg,第6张


自举电路工作原理和自举电阻和电容的选取,1663937104707992.png,第7张


推荐电容值必须根据使用的器件和应用条件来选择。如果电容过小,自举电容在上管开通时下降纹波过大,降低电容的使用寿命,开关管损耗变高,开关可靠性也变低;如果电容值过大,自举电容的充电时间减少,低端导通时间可能不足以使电容达到自举电压。


选择自举电阻


自举电阻的作用主要是防止首次对自举电容充电时电流太大的限流,英飞凌的驱动芯片一般已经把自举二极管和电阻内置,不需要额外考虑电阻的选取。这里只是给大家分析原理,当使用外部自举电阻时,电阻RBOOT带来一个额外的电压降:


自举电路工作原理和自举电阻和电容的选取,12.png,第8张


其中:


ICHARGE=自举电容的充电电流;

RBOOT=自举电阻;

tCHARGE=自举电容的充电时间(下管导通时间)


该电阻值(一般5~15Ω)不能太大,否则会增加VBS时间常数。当计算最大允许的电压降(VBOOT )时,必须考虑自举二极管的电压降。如果该电压降太大或电路不能提供足够的充电时间,我们可以使用一个快速恢复或超快恢复二极管。


实际选择时我们可能考虑更多的是自举电阻太小限制:


1. 充电电流过大在小功率输出应用触发采样电阻过流保护

2. 过小的自举电阻可能会造成更高的dVbs/dt,从而产生更高的Vs负压,关于Vs负压的危害我们会在后面继续讨论。

3. 充电电流过大容易导致充电阶段Vcc电压过低,造成欠压保护。

4. 容易造成自举二极管过流损坏。


如下图是英飞凌新一代2ED218xS06F/ 2ED218x4S06J大电流系列的SOI技术的半桥驱动内部电路,内部集成了自举电阻和自举二极管,可以帮助客户省掉自举电阻和二极管电路的设计麻烦。


自举电路工作原理和自举电阻和电容的选取,13.png,第9张


自举电路设计要点


为了保证自举电路能够正常工作,需要注意很多问题:


1. 开始工作后,总是先导通半桥的下桥臂IGBT,这样自举电容能够被重新充电到供电电源的额定值。否则可能会导致不受控制的开关状态和/或错误产生。

2. 自举电容Cboot的容量必须足够大,这样可以在一个完整的工作循环内满足上桥臂驱动器的能量要求。

3. 自举电容的电压不能低于最小值,否则就会出现欠压闭锁保护。

4. 最初给自举电容充电时,可能出现很大的峰值电流。这可能会干扰其他电路,因此建议用低阻抗的自举电阻限流。

5. 一方面,自举二极管必须快,因为它的工作频率和IGBT是一样的,另一方面,它必须有足够大的阻断电压,至少和IGBT的阻断电压一样大。这就意味着600V的IGBT,必须选择600V的自举二极管。

6. 当选择驱动电源Vcc电压时,必须考虑驱动器内部电压降及自举二极管和自举电阻的压降,以防止IGBT栅极电压不会太低而导致开通损耗增加。更进一步,所确定的电压必须减去下管IGBT的饱和压降,这样导致上下管IGBT在不同的正向栅极电压下开通,因此Vcc应当保证上管有足够的栅极电压,同时保证下管的栅极电压不会变的太高。

7. 用自举电路来提供负压的做法是不常见的,如此一来,就必须注意IGBT的寄生导通。


最后,自举电路也有一些局限性,有些应用如电机驱动的电机长期工作在低转速大电流场合,下管的开通占空比一直比较小,造成上管的自举充电不够,这种情况需要在PWM算法上做特定占空比补偿或者独立电源供应。



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


开关模式电源电路板布局的黄金法则

东芝家用光伏逆变器方案,一起将光利用起来吧!

IBIS建模--第3部分:如何通过基准测量实现质量等级为3级的IBIS模型

步进电机想要的“凌波微步”全靠它

具有集成电容器的降压稳压器如何帮助降低EMI和节省布板空间

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2997255.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-09-26
下一篇 2022-09-26

发表评论

登录后才能评论

评论列表(0条)

保存