开关稳压器是如何构建的

开关稳压器是如何构建的,第1张

开关稳压器可以采用单片结构,也可以通过控制器构建。在单片式开关稳压器中,各功率开关(一般是MOSFET)会集成在单个硅芯片中。使用控制器构建时,除了控制器IC,还必须单独选择半导体和确定其位置。选择MOSFET非常耗费时间,且需要对开关的参数有一定了解。使用单片式设计时,设计人员无需处理这些问题。

此外,相比高度集成的解决方案,控制器解决方案通常会占用更多的电路板空间。所以,毫不意外多年来人们越来越多地采用单片式开关稳压器,如今,即使对于更高功率,也有大量的解决方案可供选择。图1左侧是单片式降压转换器,右侧是控制器解决方案。

开关稳压器是如何构建的,e26f611c-331d-11ed-ba43-dac502259ad0.jpg,第2张

图 1. 单片式降压转换器(左);带外部开关的控制器解决方案(右)。

虽然单片式解决方案需要的空间较少,也简化了设计流程,但另一方面,控制器解决方案的优势是更加灵活。设计人员可以为控制器解决方案选择经过优化、适合特定应用的开关管,也可以控制开关管的栅级,所以能够通过更巧妙地部署无源组件来影响开关边沿。此外,控制器解决方案适合高功率,因为可以选择大型分立式开关管,且开关损耗会远离控制器IC。

但是,除了这些熟知的单片式解决方案的有利和不利因素之外,还有一个因素容易忽略。在开关稳压器中,所谓的热回路是实现低辐射的决定因素。在所有开关稳压器中,应尽量优化EMC。实现优化的基本原则之一是:最小化各个热回路中的寄生电感。在降压转换器中,输入电容和高压侧开关之间的路径,高压侧开关和低压侧开关之间的连接,以及低压侧开关和输入电容之间的连接都是热回路的一部分。它们都是电流路径,其中的电流随开关切换的速度而变化。通过快速的电流变化,因寄生电感形成电压偏移,可以作为干扰耦合到不同的电路部分。

所以,这些热回路中的寄生电感必须保持尽可能低。图2用红色标出各热回路路径,左侧为单片式开关稳压器,右侧为控制器解决方案。我们可以看到,单片式解决方案具有两大优势。一,其热回路比控制器解决方案的热回路小。二,高压侧开关和低压侧开关之间的连接路径非常短,且只在硅芯片上完成走线。两者相比,对于带控制器IC的解决方案,连接的电流路径必须通过封装的寄生电感布线,通常采用的键合线和引线框架具有寄生电感。这会导致更高的电压偏置,以及更差的EMC性能。

开关稳压器是如何构建的,e27de0b6-331d-11ed-ba43-dac502259ad0.jpg,第3张

图 2. 单片式开关稳压器(左)和带控制器IC的解决方案(右),每个都有一些不同形式的热回路。

结论

单片式开关稳压器具备额外的,少为人知的EMI优势,这种干扰有多强,对电路有什么影响,具体取决于许多其他参数。但是,就EMC性能而言,单片式开关稳压器和带控制器IC的解决方案之间存在差异,这一点值得考虑。

审核编辑:汤梓红

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/3000136.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-09-27
下一篇 2022-09-27

发表评论

登录后才能评论

评论列表(0条)

保存