25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源

25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,第1张

【导读】在本系列的前几篇文章中[1-6],我们介绍了基于安森美(onsemi)的SiC功率模块和其他功率器件开发的25kW EV快充系统,包括这个可扩展系统的整体架构和规格,以及其中PFC和DC-DC变换部分的硬件设计和控制策略。我们基本已经把电路设计部分讲完了,除了辅助电源设计的相关内容。


辅助电源一般由直流母线供电,用于支持各种控制器、驱动、通信器件、传感器等工作电压。根据车厂对电池的选择,额定电压通常是400 V或800 V。虽然400 V电池仍然占领目前的EV市场,但更高电压的电池将成为未来的趋势。


现在,用800 V电池替换400 V电池,这对系统效率的提高是非常有帮助的。更大的母线电压意味着PFC电路的电流更小,从而可以使用更低电流规格要求的SiC MOSFET,有助于通过提高功率密度和减少系统尺寸来提高整体效率。


除此之外,800 V电池也有自己的优势,比如高压低电流的快充。举个例子,一般充满一个60 kWh容量的电池,400 V/150 A的功率下充满需要1小时,而800 V/100 A的条件下只需要45分钟。降低工作电流能够减小电感尺寸(更细的线径)并解决散热问题,所以我们说800 V方案是EV充电站的大趋势。


考虑到这些,25 kW快充系统设计中的辅助电源是直接连接在800 V母线上的,这种情况下,在系统启动时,辅助电源系统将工作在240 V-900 V区间。由于PFC电路是交流400 V输入,母线电容通过SiC MOSFET的体二极管进行充电,所以实际母线电压会达到约560V。当母线电压达到240 V时,辅助电源系统就会开始工作。


本篇将介绍25 kW快充系统中的辅助电源设计。它基于安森美(onsemi)针对800 V母线电压的EV应用所做的一个辅助电源参考设计方案,即SECO-HVDCDC1362-40W-GEVB,它能提供15 V/40 W的持续输出供电。类似的方案还有SECO-HVDCDC1362-15W-GEVB,它能提供15 V/15 W的持续输出。


辅助电源的设计


安森美目前推出过的2套高压辅助电源方案,适用于800 V和400 V电池的BEV(纯电电动车)和PHEV(插混电动车),能提供15 W或40 W的输出功率。尽管这2套方是针对汽车应用的,但它们也能满足具有类似高压直流母线的应用,比如直流快充。这种情况下,我们可以使用非车规器件,从而减少BOM成本。


SECO-HVDCDC1362-40W-GEVB(40 W输出)和SECO-HVDCDC1362-15W-GEVB(15 W输出)是适用于800 V和400 V车载电池的高效高压辅助电源方案。它们拥有足够宽的工作电压范围240 V-900 V,可以工作在400 V和800 V系统,同时稳定提供一个15 V/15 W或15 V/40 W的输出。图1可以看到SECO-HVDCDC1362-40W-GEVB在25 kW快充系统里的位置。


25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,9.jpg,第2张

图1. 25 kW直流快充系统框图


辅助电源系统基于反激式(Flyback)拓扑,使用一颗原边反馈(Primary Side Regulated)准谐振(Quasi-Resonant)反激式控制器。原边反馈控制器的一个最大优点是它不需要光耦,这大大提高了电源的可靠性。


25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,1656319039920496.png,第3张

图2. 辅助电源框图


方案主要包括QR反激控制器NCP1362、1200 V,160 mΩ,TO247-3L的SiC MOSFET NTHL160N120SC1和SiC二极管FFSPF1065A。NTHL160N120SC1的栅极电容仅有34 nC,有利于减少电压突变和开关损耗,也有利于提高反激电路和辅助电源的整体效率。


NCP1362用于提供驱动SiC MOSFET的12 V栅极电压,无需额外的预驱,简化了整体电源设计。NCP1362的驱动电压是0 V-12 V,足以开启SiC MOSFET,没有必要达到MOSFET的最大Vgs值。一颗5 kW,160 V的TVS二极管用于为NTHL160N120SC1提供钳位保护。不使用驱动器带来了许多好处,比如:


●    减少器件成本

●    简化BOM(驱动器和相关被动器件)

●    更少器件和更少寄生效应带来的更高的稳定性

●    更高效率

●    简化Layout


直流充电模块的设计遵循IEC61851-1标准,反激变压器也符合IEC61558-1标准,其中对1000 V的工作电压时的耐压要求是2.75 kVrms,而我们设计中的反激变压器具有4 kV的耐压水平,并且为了减少RCD吸收电路的损耗进行了优化。RCD电路有助于限制高压条件下的过压、电压突变振荡,并且能为SiC MOSFET提供一个100 V的电压裕度。


图3显示了负载功率在10%-100%下的瞬态响应,图4则体现了500 V DC输入下负载在100%-10%的瞬态波形。可以看到在电压转换时没有发现任何振荡,这体现了其高度稳定性。


25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,11.jpg,第4张

图3. 10%-100%功率下的负载瞬态波形@500 V


25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,1656319012153119.png,第5张

图4. 100%-10%功率下的负载瞬态波形@500 V


采用了工业级器件的SECO-HVDCDC1362-40W-GEVB具有高输出功率,它被用在25 kW直流充电系统的3个部分。第一个是在PFC部分用于为SECO-LVDCDC3064-SIC-GEVB供电,它作为驱动SiC功率模块的栅极驱动器的隔离电源,提供稳定的电压(-5 V和20 V),如图5,用于在宽输入电压范围内的高效开断。


25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,1656318988567218.png,第6张

图5. SECO-HVDCDC1362-40W-GEVB在PFC中的使用


从图1我们可以看到剩下两个辅助电源系统被用于25 kW系统的DC-DC部分,一个连接至直流母线,另一个连接到变压器副边输出端如图6。我们没有在设计中采用高压机械开关或继电器,而是通过通用控制板(SECO-TE0716-GEVB)根据当前DC-DC工作方向来决定使用哪个辅助电源模块。


25kW SiC直流快充设计指南(第七部分):800V EV充电系统的辅助电源,1656318973942649.png,第7张

图6. SECO-HVDCDC1362-40W-GEVB在双向DC-DC中的使用


结论


800 V电池和其电路系统是非常理想的,因为它们能提高系统效率并且减少电池充电时间。不过,尽管800 V的母线电压能够降低回路电流,但设计一套高效的、适合800 V系统的辅助电源仍然充满挑战。本篇文章简单介绍了25 kW直流快充系统的辅助电源方案,它们直接连接在800 V母线并为快充系统中的低压器件供电。


本系列文章共包含八个部分,下周我们将发布第八部分。


来源:安森美



免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:


来电!物联网设备电源设计指南

仿真看世界之SiC单管的开关特性

依然缺货,销售额飙升:汽车MCU的市场走势,你看懂了吗?

如何设计可靠性更高、尺寸更小、成本更低的高电压系统解决方案

分立式CoolSiC MOSFET的寄生导通行为研究

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/4003470.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-22
下一篇 2022-10-22

发表评论

登录后才能评论

评论列表(0条)

保存