中文名空穴,又称电洞分类半导体固体物理学准粒子原理光生伏打效应 霍尔效应
工艺刻蚀掺杂离子注入分子束外延介绍概念当满带顶附近产生p0个空态时,其余大量电子在外电场作用下所产生的电流,可等效为p0个具有正电荷q和正有效质量mp,速度为v(k)的准经典粒子所产生的电流.这样的准经典粒子称为空穴。半导体如锗和硅晶体的能带结构,类似于绝缘体,导带中没有电子而价带是满带,但其间的禁带宽度较小,如硅约1.1eV,锗约0.7eV。常温下,由于热运动,少量在价带顶部的能量大的电子就可能越过禁带而升迁到导带中去成为“自由电子”,这些电子可以通过电子导电形成电流。由于电子的升迁,在原来是满带的价带中就空出了相等数量的量子态,其余未升迁的电子就可以进入这些量子态而改变自己的量子态。这些空的量子态叫空穴。由于空穴的存在,价带中的电子就松动了,也就可以在电场的作用下形成电流了。特征1.荷电量与电子相等但符号相反,既荷+q2.有效质量数值等于价带顶空态所对应的电子有效质量,但符号为正,即mp=-mn3.速度为价带顶空带所对应的电子速度4.浓度等于空态密度p0。
P型半导体是在本征半导体硅中加入3价元素锗形成的,本征半导体是一种晶格结构,每一个硅原子都会和它四周的硅原子形成共价键结构,在常温下由于热运动,最外层的硅原子就会挣脱原子核的束缚成为自由电子,失去电子后在原来的地方就留下一个空位,这就叫空穴。在本征半导体中加入3价元素锗后,某些硅原子就会被锗原子取代,锗原子最外层只有3个电子,它和四周的硅原子形成共价键结构时,还缺少一个电子,所以可以认为每一个锗原子都提供一个空穴。下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。
P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。
N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。
扩展资料
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。
以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。
参考资料
半导体-百度百科
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)