从锗到硅——半导体的有哪些结构和特性丨半导体行业

从锗到硅——半导体的有哪些结构和特性丨半导体行业,第1张

重要的半导体材料硅、锗等元素的原子最外层都具有四个价电子。大量的硅、锗原子组合成晶体靠的是共价键结合。这种结构的特点是:每个原子周围有四个最近邻的原子组成一个正四面体结构。这四个原子分别处在正四面体的顶角上,任意顶角上的原子和中心原子各贡献一个价电子为该两个原子所共有,共有的电子在两个原子之间形成较大的电子云密度,通过它们对原子的引力把两个原子结合在一起,这就是共价键。这样,每个原子和周围四个原子组成四个共价键。

在20世纪50年代初期,锗曾经是最主要的半导体材料,但自60年代初期以来,硅已取而代之成为半导体制造的主要材料。现今人们使用硅的主要原因,是因为硅器件工艺的突破,硅平面工艺中,二氧化硅的运用在其中起着决定性的作用,经济上的考虑也是原因之一,可用于制造器件等级的硅材料,远比其他半导体材料价格低廉,在二氧化硅及硅酸盐中硅的含量占地球的25%,仅次于氧。到目前为止,硅可以说是元素周期表中被研究最多且技术最成熟的半导体元素。

半导体的导电能力介于导体和绝缘体之间,半导体之所以得到广泛应用,是因为它的导电能力受掺杂、温度和光照的影响十分显著。

(1)半导体的电导率随温度升高而迅速增加。半导体对温度敏感,体积又小,热惯性也小,寿命又长,因此在无线电技术、远距离控制与测量、自动化等许多方面都有广泛的应用价值。

(2)杂质对半导体材料导电能力的影响非常大。例如,纯净硅在室温下的电阻率为2.14 109欧姆·厘米,若掺入百分之一的杂质(如磷原子),其电阻率就会降至2000欧姆·厘米。虽然此时硅的纯度仍旧很高,但电阻率却降至原来的一百万分之一左右,绝大多数半导体器件都利用了半导体的这一特性。

(3)光照对半导体材料的导电能力也有很大的影响。例如,硫化镉薄膜的暗电阻为几十兆欧,然而受光照后,电阻降为几十千欧,阻值在受光照以后改变了几百倍。半导体的这种性质,使其成为自动化控制中的重要元件。

(4)除温度、杂质、光照外,电场、磁场及其他外界因素(如外应力)的作用也会影响半导体材料的导电能力。

硅是半导体的原因:

硅原子的核外电子第一层有2个电子,第二层有8个电子,达到稳定态。最外层有4个电子即为价电子,它对硅原子的导电性等方面起着主导作用。硅晶体中没有明显的自由电子,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。

简介:

硅是一种化学元素,它的化学符号是Si,旧称矽。原子序数14,相对原子质量28.0855,有无定形硅和晶体硅两种同素异形体,属于元素周期表上第三周期,IVA族的类金属元素。硅也是极为常见的一种元素,然而它极少以单质的形式在自然界出现,而是以复杂的硅酸盐或二氧化硅的形式,广泛存在于岩石、砂砾、尘土之中。硅在宇宙中的储量排在第八位。在地壳中,它是第二丰富的元素,构成地壳总质量的26.4%,仅次于第一位的氧(49.4%)。

物理性质:

有无定形硅和晶体硅两种同素异形体。晶体硅为灰黑色,无定形硅为黑色,密度2.32-2.34克/立方厘米,熔点1410℃,沸点2355℃,晶体硅属于原子晶体。不溶于水、硝酸和盐酸,溶于氢氟酸和碱液。硬而有金属光泽。

晶胞类型:立方金刚石型;

晶胞参数:20℃下测得其晶胞参数a=0.543087nm;

颜色和外表:深灰色、带蓝色调;

采用纳米压入法测得单晶硅(100)的E为140~150GPa;

电导率:硅的电导率与其温度有很大关系,随着温度升高,电导率增大,在1480℃左右达到最大,而温度超过1600℃后又随温度的升高而减小。

化学性质:

硅有明显的非金属特性,可以溶于碱金属氢氧化物溶液中,产生(偏)硅酸盐和氢气。

硅原子位于元素周期表第IV主族,它的原子序数为Z=14,核外有14个电子。电子在原子核外,按能级由低硅原子到高,由里到外,层层环绕,这称为电子的壳层结构。硅原子的核外电子第一层有2个电子,第二层有8个电子,达到稳定态。最外层有4个电子即为价电子,它对硅原子的导电性等方面起着主导作用。

正因为硅原子有如此结构,所以有其一些特殊的性质:最外层的4个价电子让硅原子处于亚稳定结构,这些价电子使硅原子相互之间以共价键结合,由于共价键比较结实,硅具有较高的熔点和密度;化学性质比较稳定,常温下很难与其他物质(除氟化氢和碱液以外)发生反应;硅晶体中没有明显的自由电子,能导电,但导电率不及金属,且随温度升高而增加,具有半导体性质。

加热下能同单质的卤素、氮、碳等非金属作用,也能同某些金属如Mg、Ca、Fe、Pt等作用。生成硅化物。不溶于一般无机酸中,可溶于碱溶液中,并有氢气放出,形成相应的碱金属硅酸盐溶液,于赤热温度下,与水蒸气能发生作用。

应用领域:

1、高纯的单晶硅是重要的半导体材料。在单晶硅中掺入微量的第IIIA族元素,形成p型硅半导体;掺入微量的第VA族元素,形成n型半导体。p型半导体和n型半导体结合在一起形成p-n结,就可做成太阳能电池,将辐射能转变为电能。在开发能源方面是一种很有前途的材料。另外广泛应用的二极管、三极管、晶闸管、场效应管和各种集成电路(包括人们计算机内的芯片和CPU)都是用硅做的原材料。

2、金属陶瓷、宇宙航行的重要材料。将陶瓷和金属混合烧结,制成金属陶瓷复合材料,它耐高温,富韧性,可以切割,既继承了金属和陶瓷的各自的优点,又弥补了两者的先天缺陷。可应用于军事武器的制造。第一架航天飞机“哥伦比亚号”能抵挡住高速穿行稠密大气时摩擦产生的高温,全靠它那三万一千块硅瓦拼砌成的外壳。

3、光导纤维通信,最新的现代通信手段。用纯二氧化硅可以拉制出高透明度的玻璃纤维。激光可在玻璃纤维的通路里,发生无数次全反射而向前传输,代替了笨重的电缆。光纤通信容量高,一根头发丝那么细的玻璃纤维,可以同时传输256路电话;而且它还不受电、磁的干扰,不怕窃听,具有高度的保密性。光纤通信将会使21世纪人类的生活发生革命性巨变。

4、性能优异的硅有机化合物。例如有机硅塑料是极好的防水涂布材料。在地下铁道四壁喷涂有机硅,可以一劳永逸地解决渗水问题。在古文物、雕塑的外表,涂一层薄薄的有机硅塑料,可以防止青苔滋生,抵挡风吹雨淋和风化。天安门广场上的人民英雄纪念碑,便是经过有机硅塑料处理表面的,因此永远洁白、清新。

5、由于有机硅独特的结构,兼备了无机材料与有机材料的性能,具有表面张力低、粘温系数小、压缩性高、气体渗透性高等基本性质,并具有耐高低温、电气绝缘、耐氧化稳定性、耐候性、难燃、憎水、耐腐蚀、无毒无味以及生理惰性等优异特性,广泛应用于航空航天、电子电气、建筑、运输、化工、纺织、食品、轻工、医疗等行业,其中有机硅主要应用于密封、粘合、润滑、涂层、表面活性、脱模、消泡、抑泡、防水、防潮、惰性填充等。随着有机硅数量和品种的持续增长,应用领域不断拓宽,形成化工新材料界独树一帜的重要产品体系,许多品种是其他化学品无法替代而又必不可少的。

6、硅可以提高植物茎秆的硬度,增加害虫取食和消化的难度。尽管硅元素在植物生长发育中不是必需元素,但它也是植物抵御逆境、调节植物与其他生物之间相互关系所必需的化学元素。

硅是半导体的原因:硅原子的核外电子第一层有2个电子,第二层有8个电子,达到稳定态。最外层有4个电子即为价电子,它对硅原子的导电性等方面起着主导作用。硅晶体中没有明显的自由电子,能导电,但导电率不及金属,且随温度升高而增加,所以具半导体性质。

扩展资料:

硅在地壳中的含量是除氧外最多的元素。如果说碳是组成一切有机生命的基础,那么硅对于地壳来说,占有同样的位置,因为地壳的主要部分都是由含硅的岩石层构成的。这些岩石几乎全部是由硅石和各种硅酸盐组成。长石、云母、黏土、橄榄石、角闪石等等都是硅酸盐类;水晶、玛瑙、碧石、蛋白石、石英、砂子以及燧石等等都是硅石。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5908378.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-07
下一篇 2023-03-07

发表评论

登录后才能评论

评论列表(0条)

保存