在更智能化发展上,TWS各大厂商的脚步从没有停止。投入重研发,引领新技术,打造差异化,开发新赛道,技术供应链越来越成熟,产品更新迭代越来越快。
金九银十,在9月3日由旭日大数据主办的TWS峰会上,会有将近50家现场展商携带与以往完全不同的新品亮相,而TWS也将以全新的面貌展示未来更多的可能性。
截止2021年7.26日,图解供应链上榜产品已达32款。
作为TWS真无线蓝牙耳机的主控“大脑”,主控芯片承载着蓝牙传输,降噪,RF,CODEC等多项功能,是TWS耳机中不可或缺的重要部件,也是TWS耳机占比最大份额的细分领域。在数据君与产业链专业人士沟通时,了解到目前在TWS领域中,拥有开发设计蓝牙主控芯片的厂商涉及上百家,数据君通过图解供应链也整理出七家优秀主控芯片供应商,让我们一起来 探索 一下,蓝牙主控芯片的奇妙世界吧!
TWS供应链——主控芯片供应商
其中BES恒玄在供应链中出现次数多达18次,Qualcomm高通和Airoha络达出现次数在5次,APPLE苹果/Actions炬芯/Hisilicon华为海思/RealTek瑞昱出现次数均在1次。
恒玄 科技
恒玄 科技 主要从事智能音频SoC芯片的研发,设计与销售,为客户提供AIoT场景下具有语音交互能力的边缘智能主控平台芯片,产品广泛应用于智能蓝牙耳机,Type-C耳机,智能音箱等智能终端产品。恒玄 科技 致力于成为全球最具创新力的芯片设计公司,以前瞻的研发及专利布局,持续的技术积累,快速的产品迭代,灵活的客户服务,不断推出领先优势的产品及解决方案,成为AIoT主控平台芯片的领导者。
高通
高通(英文名称:Qualcomm,中文简称:高通公司、美国高通或美国高通公司)创立于1985年,高通是全球领先的无线 科技 创新者,变革了世界连接、计算和沟通的方式。把手机连接到互联网,高通的发明开启了移动互联时代。在中国,高通开展业务已逾20年,与中国生态伙伴的合作已拓展至智能手机、集成电路、物联网、大数据、软件、 汽车 等众多行业。
络达 科技
Airoha络达 科技 成立于2001年,是业界领先的IC设计领导厂商,首个十年致力于开发无线通信的高度集成电路,为客户提供高性能、低成本的各式射频与混合信号集成电路组件、及蓝牙无线通信芯片,累积长足的无线通信射频经验与人才;第二个十年则投入蓝牙低功耗单芯片与蓝牙无线音频系统解决方案,于2017年成为联发 科技 集团公司一员后,更进一步结合集团力量跨足物联网领域,提供具备各类型无线通信技术的低功耗微型处理器系统芯片,连接未来物联网世界中亿万个智能装置。
苹果
苹果公司(Appleinc.)是一家美国跨国公司总部位于加州库比蒂诺,公司设计,开发,和销售消费电子产品、计算机软件、在线服务,和个人电脑。最著名的电脑硬件产品有Mac系列,iPod媒体播放器,iPhone智能手机和iPad平板电脑。在线服务包括iCloud、iTunes和AppStore。其消费者软件包括OSX和iOS *** 作系统,iTunes媒体浏览器,Safari浏览器,iLife和iWork。
炬芯 科技
炬芯 科技 股份有限公司主营业务为中高端智能音频SoC芯片的研发、设计及销售。
炬芯主要产品为蓝牙音频SoC芯片系列、便携式音视频SoC芯片系列、智能语音交互SoC芯片系列等,广泛应用于蓝牙音箱、蓝牙耳机、蓝牙语音遥控器、蓝牙收发一体器、智能教育、智能办公、智能家居等领域。公司深耕以音频编解码、模数混合多媒体处理、电源管理和高速模拟接口为核心的低噪声、低功耗、高品质音频全信号链技术。以及以蓝牙射频、基带和协议栈技术为核心的低功耗无线连接技术。公司擅长在低功耗的基础上提供高品质音质,专精将射频通信、电源管理、模数混合音频信号处理、CPU、DSP以及存储单元等模块集成于一颗单芯片SoC上;同时,通过融合软件开发包和核心算法提升SoC的价值,帮助客户降低基于芯片开发量产的门槛。面对领域众多、终端开发能力差异较大的客户群,公司可提供整体解决方案以及方便二次开发的软硬件开发平台。
华为海思
海思半导体是一家半导体公司,海思半导体有限公司成立于2004年10月,前身是创建于1991年的华为集成电路设计中心。海思公司总部位于深圳,在北京、上海、美国硅谷和瑞典设有设计分部。海思的产品覆盖无线网络、固定网络、数字媒体等领域的芯片及解决方案,成功应用在全球100多个国家和地区;在数字媒体领域,已推出SoC网络监控芯片及解决方案、可视电话芯片及解决方案、DVB芯片及解决方案和IPTV芯片及解决方案。2019年海思Q1营收达到了17.55亿美元,同比大涨了41%,增速远远高于其他半导体公司,排名也上升到了第14位。
瑞昱半导体
瑞昱半导体成立于1987年,位于有着中国台湾“硅谷”之称的新竹科学园区,凭借当年几位年轻工程师的热情与毅力,走过艰辛的草创时期到今日具世界领导地位的专业IC设计公司,瑞昱半导体披荆斩棘,展现旺盛的企图心与卓越的竞争力,开发出广受全球市场肯定与欢迎的高性能、高品质与高经济效益的IC解决方案。瑞昱半导体自成立以来一直保持稳定的成长,归功于瑞昱对产品/技术研发与创新的执着与努力,同时也归因于瑞昱的优良传统。
TWS耳机市场有多大?
根据旭日大数据统计数据显示,2020年全球TWS出货4.6亿对,同比增长43.75%。预计2021年全球出货量还将继续上升。
其中,品牌占比44%,白牌所占市场份额为56%。相较2019年而言不难发现,品牌占比正在稳步提升中,白牌市场份额进一步缩窄,不过仍然占据主要市场。
可以肯定的是,TWS市场发展已然迎来全新风口,出货量突破十亿大关指日可待。
TWS主控芯片市场趋势
一、蓝牙技术更迭,优化TWS耳机用户体验
在2020年1月,蓝牙技术联盟(BluetoothSpecial Interest Group,简称SIG)正式发布新一代蓝牙音频技术标准——BluetoothLE Audio(低功耗蓝牙音频,以下简称BLEAudio),意味着低功耗蓝牙技术标准将支持音频传输功能。BLEAudio具有低功耗、连接范围广、单模蓝牙芯片成本较低等优势,因此旭日大数据认为未来单模低功耗蓝牙有望替代传统蓝牙,换言之移动电子设备仅需使用单模低功耗蓝牙芯片即可。
BLEAudio拥有三大技术特点
1:低复杂性通信编解码器(LowComplexity Communication Codec,LC3)
2:多重串流音频(Multi-StreamAudio)
3:广播音频分享(AudioSharing)
二、TWS主控芯片“晋级”
SiP(SysteminPackage,系统级封装)为一种封装的概念,是将一个系统或子系统的全部或大部分电子功能配置在整合型基板内,而芯片以2D、3D的方式接合到整合型基板的封装方式。SiP不仅可以组装多个芯片,还可以作为一个专门的处理器、DRAM、快闪存储器与被动元件结合电阻器和电容器、连接器、天线等,全部安装在同一基板上上。这意味着,一个完整的功能单位可以建在一个多芯片封装,因此,需要添加少量的外部元件,使其工作。
行业总结
TWS耳机市场的火热让多家芯片厂商在蓝牙音频SoC上竞相角逐,不断推出各种蓝牙真无线方案。有芯片自研能力的大牌倾向于使用自研芯片以期获得对自家产品最好的优化。相比TWS品牌厂商的百花齐放,芯片厂商的头部集中度更加明显,每个厂商都有差异化的目标市场,不过,我们相信随着TWS行业的发展,这种明确的两极分化格局最终会被打破,头部优秀的供应商将更多地扩展产品线,覆盖更多市场。
芯片,也就是微处理器。它们能够帮助将复杂逻辑简化,因而广泛应用到了工业控制、从生产场景到消费场景,等的方方面面。
一方面,它能帮助将N层逻辑的处理简化;另一方面,它能将一对多逻辑简化。从而让人类对各类生产设备的参数设置、对各类消费电子产品的参数设置,就能变得比从前、没有采用它们的条件下,变得容易得多。
简单逻辑的微处理器,也包含纯模拟电路的集成电路;
复杂逻辑的微处理器,就需要以数字电路来构建。
因为支持复杂逻辑的微处理器,能够同时胜任简单逻辑任务,所以数字电路建构的微处理器在整个市场中占比更高、能占到绝大多数一个比例。
关于汽车中的集成电路、微处理器、或俗称“芯片”,我们得清楚一点就是,那些供应用于汽车的芯片,也不会仅仅只能用于汽车领域,通常还会有它们适用的其他行业领域。
举例来说,汽车上面负责处理车载雷达数据的芯片,那其实在其他需要处理雷达数据的场合(比如交通测速当中),也会出现同型号的芯片。
同样的,用于车载GPS数据处理的芯片,也能用于手机上的GPS数据处理。
还有比如,车载倒车影像处理芯片,车载灯光控制芯片,空调控制芯片,胎压检测芯片,多媒体播放设备中的各类解码芯片,无线收音设备的处理芯片,车内温湿度检测芯片,还有电动汽车电机控制芯片,变速箱自动调速芯片,车轮摩擦系数计算芯片,……等等不一而足。
因为供求关系持续处于变动当中,个别行业一直就存在着“热门芯片”短缺的问题:
比如在手机领域,较为高端、受到市场欢迎的ARM高通版芯片,就一直处于供应量有限、供不应求的局面当中。
还有在之前,我们PC领域知名的Intel公司,其个别爆款芯片,也因为受到市场欢迎,而经常变得供不应求。
汽车市场竟然也走到了芯片短缺的地步,一方面是全球汽车消费繁荣导致,另一方面我们也要看到,其他行业对同类芯片的需求,也可能减少电子厂能够提供给汽车厂商的芯片供给,以及在产业链上也会分流相当大一部分芯片产能。
在设计之外,我们全球芯片的制造能力(某种尺寸、某种架构之下的芯片制造能力)也都是具有“明确的饱和产能”的。
包括我们一些政府出于这样那样的原因,会对另一个政府(纳税管辖下的企业)实施种种制裁。在这种时候,我们的一些制造产能,就可能被削减,这种情况也会减少市场供给(进而导致对汽车厂商的芯片供给也相应变少)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)