近日,美国 芝加哥大学 Alexander A. High团队在Nature Photonics上发文,报道了在原子薄单层二硒化钨tungsten diselenide(WSe2)纳米光子界面中的电可控手性。二氧化钛波导直接制作在低无序氮化硼封装的WSe2表面上。在积分之后,从激子态到波导中的光致发光,可以在平衡发射和定向偏置发射之间电切换。工作原理利用了WSe2中激子态掺杂相关的谷极化。此外,纳米光子波导,可以用作扩散激子通量的近场源,其显示从界面手性继承的谷和自旋极化。这种多功能制造方法,使光子学与范德瓦尔斯异质结构的确定性集成成为可能,并可提供对其激子和电荷载流子行为的光学控制。
Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor
二维半导体的纳米光子界面中的电控手性。
图2:界面静电调谐。
图3:谷极化的栅极依赖性。
图4:谷(自旋)极化激子通量的光子泵浦。
该项研究演示了与六方氮化硼hexagonal boron nitride,hBN封装的、电门控WSe2单层连接的光子波导。界面表现出从0%到20%电可调手性-定向耦合效率chiral–directional coupling efficiency,CDCE,并通过近场激发产生谷(自旋)极化激子通量。
除了线性波导,多功能纳米光子制造方法,可以将过渡金属硫化物TMDCs与更复杂的光子结构连接,其中器件几何形状和尺寸仅,受先进光刻技术限制,使光子环调制器和干涉仪,以及光子晶体中的激子-极化激元成为可能。
结合二维材料大面积生长、剥离和组装的最新进展,这将提高异质结构产量和可扩展性,超越目前限制,这项工作,为其与纳米光子电路的确定性、晶圆级集成,建立了一个通用平台。
重要的是,该界面的可调手性(以前在其他手性光学界面中无法获得)依赖于过渡金属硫化物TMDC单层中激子态掺杂相关的谷动力学。多层和扭曲的范德瓦尔斯异质结构,展示了设计的、奇异的谷特性,也可以与这种波导界面相结合,用于额外手性功能,如栅极可逆发射路由,并提供基于二维材料的新光子逻辑和控制方案。
此外,原子薄半导体中,激子扩散的纳米光子驱动,在分布式光子元件和局部激子电路之间建立了一座桥梁。此外,通过手性过渡金属硫化物TMDC–光子界面的近场光泵浦,可用于产生单层中驻留电荷载流子的自旋极化。这种光学制备的自旋极化电子态,对载流子掺杂水平敏感,可以打破界面时间反演对称性,实现集成纳米光子结构中的栅极激活全光非互易性。
文献链接:https://www.nature.com/articles/s41566-022-00971-7
DOI: https://doi.org/10.1038/s41566-022-00971-7
本文译自Nature。
二维半导体材料具有独特的电学性能,是半导体材料研究的重要突破。例如石墨烯、氮化硼、二硫化钼就是典型的二维半导体材料。同时,二维半导体材料具有广阔的研究空间,例如最具潜力的研究方向——构建范德华异质结构,即把不同性质的二维半导体材料层间堆叠形成新的人工结构,可以实现丰富的器件功能。另外,一些新型的二维半导体材料有望应用于高性能柔性光探测领域,在超薄柔性薄膜晶体管、发光二极管、太阳能电池等光电子领域中也具有广泛的应用前景。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)