什么是半导体?

什么是半导体?,第1张

半导体主要具有三大特性:

1.热敏特性

半导体的电阻率随温度变化会发生明显地改变。例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。温度的细微变化,能从半导体电阻率的明显变化上反映出来。利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。

值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。

2.光敏特性

半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时。电阻一下子降到几十千欧姆,电阻值改变了上千倍。利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等。广泛应用在自动控制和无线电技术中。

3.掺杂特性

在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。例如。在纯硅中掺人。百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm,也就是硅的导电能为提高了50多万倍。人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。

扩展资料

1、半导体的组成部分

半导体的主要由硅(Si)或锗(Ge)等材料制成,半导体的导电性能是由其原子结构决定的。

2、半导体分类

(1)半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

(2)按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。

此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

3、半导体的作用与价值

目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等。其中以锗、硅材料的生产技术较成熟,用的也较多。

用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有:

(1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。

(2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。

(3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。

半导体是导电能力介于导体和绝缘体之间的物质。它的重要特性表现在以下几个方面:

(1)热敏性 半导体材料的电阻率与温度有密切的关系。温度升高,半导体的电阻率会明显变小。例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半。

(2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了。例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧。半导体受光照后电阻明显变小的现象称为“光导电”。利用光导电特性制作的光电器件还有光电二极管和光电三极管等。

近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能。目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管。

另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源。

(3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化。例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米。因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件。

由以上特性的,可以确定为半导体。绝对不要以为是按阻值范围划分的。

下面,是根据导电特性作出的标准划分。能带的概念是大学的,建议不必深究,不用再查,确实对中学生没必要。

可将固体划分为导体,半导体和绝缘体。

善于传导电流的物质称为导体。常见的导体有金属、电解质水溶液、电离气体等。对金属来说,内层电子能量较低,充满能带,故不参与导电。金属多数是一价的,每个原子的外层轨道有一个价电子,故晶体中N个价电子不能填满一个能带而形成导带,在外电场作用下导带中的自由电子可从外电场吸收能量,跃迁到自身导带中未被占据的较高能级上,形成电流。

绝缘体在形态上可分为固态、液态和气态。固态绝缘体中又分为非晶态(如塑料、橡胶、玻璃等)和晶态(如云母、金刚石等)两类。晶态绝缘体能带的结构与导体的不同点是:电子恰好填满能量低的能带,其它的能带都是空的,亦即绝缘体中不存在导带,只有满带和空带。满带和空带之间不可能存在电子的能量区域被称为禁带。绝缘体的基本特征就是禁带的宽度(又称能隙)很大。电子很难在热激发或外电场作用下获得足够的能量由满带跃入空带。

半导体的导电能力介于导体和绝缘体之间,其能带结构与绝缘体类似。在绝对零度时,只存在满带和空带。与绝缘体不同的是禁带较窄,在室温下,在外界光、热、电作用下能容易地把满带中能量较高的电子,激发到空带,把空带变为导带。同时,在满带中留下一些电子空位,这些空位称为空穴,可看成是带正电荷的准粒子。在半导体中,一方面,在外电场作用下,导带中电子作定向运动,形成电流,起导电作用;另一方面,满带中的空穴,在外电场作用下,将被其它能态的电子进来填充,同时,在这个电子能态中又产生了新的空穴,于是就出现了电子填补空穴的运动。在电场作用下,填补空穴的电子也作定向移动,形成电流。这种电子填补空穴的运动,完全相当于带正电的空穴在作与电子运动方向相反的运动。为了区别于自由电子的导电,这种导电称之为空穴导电。导带中自由电子的导电和满带中空穴导电是同时存在的,宏观上的电流就是电子电流和空穴电流的代数和。满带中的空穴数和导带中电子数正好相等,都是参与导电的载流子。半导体导电与金属导电的差别,那就是金属中只有自由电子参与导电,而半导体中导带中电子和满带中空穴都参与导电。半导体中自由电子数目较小,有可能通过外部电场作用来控制其中的电子运动。半导体的电阻率随温度不同而明显变化。温度升高时,有更多的电子被热激发,使满带中的空穴数和导带中的电子数急剧增加,导电性能大大提高,电阻率相应地大大降低。

半导体物理h是表示小时。

小时不是时间的国际单位制基本单位(时间的国际单位制基本单位是秒),而是与国际单位制基本单位相协调的辅助时间单位。

大写字母H的含义:

1、在化学中,表示元素氢的化学符号,或表示1个氢原子。或表示原子构成的物质。

2、在数学几何中,小写h代表高度。

3、在哈勃定律中,H表示哈勃常数。

4、在量子物理学中,表示“哈密顿算符”,小写h代表普朗克常数。(其值约为6.626196×10^-34J·s) 。

5、在国际单位制中,表示电感单位的亨利 。

6、在医药批准字号中,表示化学药品,海洛因的缩写。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/5926378.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-08
下一篇 2023-03-08

发表评论

登录后才能评论

评论列表(0条)

保存