半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。
分类 晶体二极体晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。
双极型电晶体它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。
场效应电晶体它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。
根据栅的结构,场效应电晶体可以分为三种:
①结型场效应管(用PN结构成栅极)
②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)
③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。
在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。
命名方法中国半导体器件型号命名方法
半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:
第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体
第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。
第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。
第四部分:用数字表示序号
第五部分:用汉语拼音字母表示规格号
例如:3DG18表示NPN型矽材料高频三极体
日本半导体分立器件型号命名方法
日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:
第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。
第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。
第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
美国半导体分立器件型号命名方法
美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:
第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。
第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。
第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。
第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。
第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。
国际电子联合会半导体器件型号命名方法
德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:
第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料
第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。
第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。
第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。
除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:
1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。
2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。
3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。
如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。
积体电路把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。
光电器件 光电探测器光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。
半导体发光二极体半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。
半导体雷射器如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。
光电池当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。
其它利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。
未来发展今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。
这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。
这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。
毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。
图书信息书 名: 半导体器件
作 者:布伦南高建军刘新宇
出版社:机械工业出版社
出版时间: 2010年05月
ISBN: 9787111298366
定价: 36元
内容简介《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。
《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。
作者简介Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。
图书目录译者序
前言
第1章 半导体基础
1.1 半导体的定义
1.2 平衡载流子浓度与本征材料
1.3 杂质半导体材料
思考题
第2章 载流子的运动
2.1 载流子的漂移运动与扩散运动
2.2 产生-复合
2.3 连续性方程及其解
思考题
第3章 结
3.1 处于平衡状态的pn结
3.2 不同偏压下的同质pn结
3.3 理想二极体行为的偏离
3.4 载流子的注入、拉出、电荷控制分析及电容
3.5 肖特基势垒
思考题
第4章 双极结型电晶体
4.1 BJT工作原理
4.2 BJT的二阶效应
4.2.1 基区漂移
4.2.2 基区宽度调制/Early效应
4.2.3 雪崩击穿
4.3 BJT的高频特性
思考题
第5章结型场效应电晶体和金属半导体场效应电晶体
5.1 JFE
(文/观察者网 吕栋)在距今大约5.3亿年前的寒武纪时期,地球上在2000多万年的时间里突然涌现出各种各样的生物,一系列与现代动物形态基本相同的物种来了个“集体亮相”。而在此之前,更为古老的地层中却长期没有找到动物化石,这一时期史称“寒武纪生命大爆发”。
5.6亿年前寒武纪出现的最有代表性的远古动物——三叶虫。图源:视觉中国
现如今,“寒武纪生命大爆发”仍然是古生物学和地质学中的一大悬案,更是困扰着包括达尔文在内的学界大佬。然而,当我们此刻在搜索引擎中输入“寒武纪”这三个字时,排在输出结果第一位的已不再是那个困扰科学界的谜题,而是一家人工智能芯片领域的 科技 公司。
值得注意的是,最近几年,国内涌现出不少初创AI芯片设计企业,它们在吸附大量一级市场资金后,一方面互相激烈竞争,另一方面还不得不面对来自巨头的压力。在该领域,不仅有英特尔、英伟达等芯片行业传统巨头,也有华为、阿里等跨界选手,无一不对这块蛋糕“垂涎三尺”。
而寒武纪正诞生于上述背景中。
一个月前的2月28日晚间,北京证监会官网发布消息,2019年12月5日,中科寒武纪与中信证券签署A股上市辅导协议,正式开启冲刺科创板的进程。
而3月26日上交所官网显示,创办刚满4年的寒武纪上市申请已获受理。短短几个字,意味着该公司距登陆科创板又近了一步,同时也再次将其置于舆论的放大镜下。
市场普遍认为,如果寒武纪成功登陆科创板,将成为毫无悬念的“AI芯片第一股”。
残酷的现实便是,中国集成电路进口额长期大于出口额。官方数据显示,2019年中国集成电路进口总额为3055.5亿美元,而出口仅1015.8亿美元,进出口比例为3:1,时代也在期待中国芯片领军者。
而该公司以“寒武纪”给自己命名,寓意“AI大爆发”,并以“全球智能芯片领域的先行者”作为自己定位,既彰显了几分神秘又凸显了其“野心”。
别人眼中的学霸
提起寒武纪,就不得不提其创始人陈云霁和陈天石这两兄弟。
哥哥陈云霁1983年出生,两年后弟弟陈天石出生,江西南昌人。与大多数年过而立、尚未不惑的同龄人相比,他们可以说已有所成就。
1月16日,陈天石刚以寒武纪CEO身份成为2019年中国科学年度新闻人物十人之一,而陈云霁早已从前辈手中接过2017年度 科技 创新人物奖。
不少人好奇,这对来自江西的“双子星”,缘何既能读书出色,又能在创业后搞出一个“独角兽”。
履历显示,陈云霁9岁上中学,14岁便考入中国科大少年班,24岁取得中科院计算所博士学位,29岁晋升为研究员,33岁获得中国青年 科技 奖和中科院青年科学家奖。
小两岁的陈天石,几乎是沿着哥哥的脚步一路从中科大少年班追到了中科院计算所。他16岁考入中科大少年班,25岁在中科大计算机学院拿到博士学位,指导导师是陈国良和姚新。
事实上,这对别人口中的学霸,在他们自己看来并非“模范兄弟”。
陈云霁曾提到,两人小时候常打架,长大后一言不合就吵起来,要不是有血缘关系早就闹崩了。不过,两人最终还是会让道理来说话。
在接受媒体采访时,陈云霁曾透露,“和很多人想象的不太一样,我并不是学霸。相反,多数时候都是一个学渣。”而且他讲到,在19年的学习生涯中,不但考第一名的次数不多,还常在班上排名倒数。
2002年,19岁的陈云霁已经在中科大少年班度过了第五个年头。酷爱 游戏 的他对于自己的课业成绩并不太在意,而是把《星际争霸》当做主课来修。他曾坦言,“挂科的压力一直是悬在头上的剑,但是科大的老师对于我们这些调皮的孩子非常包容,给了我们很大的空间去成长。”
当年,即将本科毕业的陈云霁听说中科院计算所在研制中国第一块通用CPU芯片“龙芯1号”,希望能拜师计算所胡伟武老师,于是报考了中科院计算所的研究生。
这家始建于1956年的研究所,是中国第一个专门从事计算机科学技术综合研究的学术机构。从这里走出的包括联想控股、龙芯中科、中科曙光等,均为中国信息技术产业中的知名企业。
2017年,陈云霁接受采访时曾开玩笑称,在他之前,中科院计算所从来没有招过像他本科成绩这么差的学生。但是,胡伟武看到他玩《星际争霸》的表现,认定他有科研潜力,便力排众议将他录取。
“Work hard,play harder!胡老师就是看中了我这一点。” 陈云霁当时说。
估值超220亿
事实证明,陈云霁确实没有辜负胡伟武的期望。
博士毕业后,他留在了中科院计算所龙芯团队,在胡伟武的指导下成为8核龙芯3号的主架构师。他还与胡伟武合著了《计算机体系结构》,并在2008年开发龙芯3号的过程中完成了一篇重量级的论文。
不仅如此,陈云霁向胡伟武引荐了另一位“高徒”,他的弟弟陈天石。
与做硬件芯片出身的陈云霁不同,陈天石的研究方向是人工智能,专注于软件算法。 在博士毕业后他也加入了中科院计算所,这为后来两个人一起设计出“让计算机更聪明”的专门神经网络处理器埋下了伏笔。
时针拨回到2010年,当时国内人工智能芯片尚处于较冷阶段。
根据公开报道,在计算所汇合后,陈氏兄弟也曾就职业发展探讨了好长时间,最后认定有两件“非常好玩的事”可以做:一是用AI辅助做处理器的设计,另外一个就是做AI芯片。
起初,陈天石在向计算所领导汇报想做AI芯片时还曾拿自动驾驶举例:“大家很早就在说有一天机器会替代人开车,但如果开车的机器人在做模式识别的时候速度不够快,那么这个车就完全没有让机器开的理由。所以,它一定需要很强的车载运算能力。”
2015年,早在寒武纪公司成立之前,在中科院战略性先导专项和中科院计算所的支持下,陈氏兄弟主导的世界首款深度学习专用处理器原型芯片——“寒武纪”首次成功流片。
之所以取名为“寒武纪”,是想用地质学上生命大爆发的时代寓意人工智能的未来。
次年春天,谷歌的AlphaGo“一战成名”,人工智能在全世界范围内再次掀起波澜,国内对人工智能的重视也达到前所未有的高度。不仅如此,2017年以及之后的两会中,人工智能也成为关键词之一。
而陈氏兄弟的研究也赶上了好时候。
2016年,全球首款可商用的深度学习处理器“寒武纪1A”处理器问世,寒武纪 科技 公司也正式成立于当年3月,其数千万的天使轮融资也正是来自中科院。
值得一提的是,性格的不同也让陈氏兄弟在公司拥有不同的角色。
陈云霁在公司职务上更偏研究,思考技术路径相关的部分,很少挂寒武纪头衔,多以“中科院计算所研究员”示人。
据陈云霁透露,他的性格偏外向、胆子大,喜欢做一些天马行空的事情,更适合搞科研。
而弟弟陈天石比较慎重,每走一步都会想好可行性,能规避产业发展中的“坑”,适合带领一个企业往前冲。
所以陈天石总以寒武纪创始人、CEO的身份出现在公众视野。
根据公开报道,除陈氏兄弟外,寒武纪团队成员不仅囊括了中科院技术精英,也有中国首个通用CPU“龙芯1号”的核心参与人员。
具体奋斗目标上,他们希望让AI芯片计算效率提升1万倍,功耗降低1万倍,可以把“AlphaGo”这样的领先AI应用装入手机中。
不过,“天才少年”也曾被人吐槽。
根据中国科学报报道,在寒武纪最开始募资的时候,其团队也曾碰钉子,有人吐槽他们“PPT做得差”,边吐槽边教育,“小伙子你这样是融不到钱的”。
招股说明书显示,在公司成立之后,寒武纪共经历了6次增资和3次股权转让。
2017年8月,该公司完成估值10亿美元的A轮融资,国投创业领投,阿里巴巴、联想创投、国科投资、中科图灵、元禾原点和涌铧投资等参投,使得寒武纪成为全球AI芯片领域首家独角兽公司。
不到一年之后的2018年6月,寒武纪宣布完成数亿美元B轮融资,国有资本风险投资基金、国新启迪、国投创业、国新资本等联合领投,该轮融资后的寒武纪估值约为25亿美元,距离一年前的10亿美元翻了一番还多。
正是在此时,陈天石对外透露了公司上市动向:“未来倾向于考虑在境内A股上市”。
在此之后,寒武纪的估值便不得而知。根据招股书,2019年9月13日,寒武纪新增南京招银、湖北招银、国调国信智芯和嘉富泽地等股东;2019年9月16日,陈天石将其所持寒武纪有限2.43%的股权和0.86%的股权分别转让给艾溪合伙和纳什均衡。
这也是寒武纪在上市前最后的增资与股权变动。
根据股权结构,南京招银出资8亿元,获得寒武纪上市前3.61%的股权,纳什均衡受让了0.86%股权,耗资1.8亿元。
据此计算得知,寒武纪在经历6轮融资后估值约221.6亿元。
由于在过去的几轮融资中,国字号背景的投资方居多,寒武纪也因此被市场视为AI芯片的“国家队”。
存银行理财39亿
寒武纪公开的招股书披露,其主营业务是应用于各类云服务器、边缘计算设备、终端设备中人工智能核心芯片的研发、设计和销售,主要产品包括终端智能处理器IP、云端智能芯片及加速卡、边缘智能芯片及加速卡以及与上述产品配套的基础系统软件平台。
简而言之,人工智能芯片是相对于传统芯片的概念。
目前,AI芯片主要是指GPU、FPGA、ASIC等人工智能加速芯片,主要用于解决人工智能庞大的算力需求。AI芯片的主要应用场景为云计算数据中心与边缘计算,后者包括摄像头 IPC、自动驾驶、手机的Soc等。
纵观处理器芯片市场,通用处理器芯片如CPU、GPU的芯片的壁垒极高,国内仍未实现突破,且通用处理器领域已经发展成熟,目前市场由国际巨头高度垄断,后来者难以竞争。
而AI芯片是全新的市场,进入者有后发先至的可能,寒武纪正是这样的新入局者。
自寒武纪2016年3月成立以来,其先后推出了三大类产品:
招股书中介绍,寒武纪目前采用的盈利模式是“授权+成品”,前者类似ARM,将AI芯片的知识产权(IP) 授权给下游厂商,例如最知名的合作伙伴华为;后者则是寒武纪自己设计,找代工方生产后自行销售。
值得注意的是,IP供应商相比于芯片提供商利润规模并不高。
例如,ARM作为全球领先的半导体IP提供商,本身不直接从事芯片生产。
全球大部分的手机CPU都在使用ARM架构,市占率非常高,但是营收规模却在巨头中比较逊色。2017年ARM核芯片出货量213亿颗,营收才17.8亿美元,净利8亿美元,营收规模还不如国内很多芯片公司。
而处理器龙头英特尔是芯片供应商,2017年营收628亿美元,净利润为96亿美元,收入规模远超ARM。
公开资料显示,人工智能IP仅作为一个加速芯片模块,价格远比不上ARM IP。
因此,IP研发需要巨大的成本投入,在IP未得到大规模应用情况下,是付出多回报少的“苦生意”。
由于智能芯片研发需要大量资本开支,作为初创公司,寒武纪也年年亏损。
招股书显示,2017年-2019年,其营收分别为784.33万元、1.17亿元、4.44亿元;营收增幅明显,但盈利堪忧,连续三年分别亏损3.8亿元、4104万元和11.79亿元,累计约16亿元。
而巨额亏损主要来自两方面,一是“研发支出较大,产品仍在市场拓展阶段”,二是“报告期内因股权激励计提的股份支付金额较大”。
其也在特别风险提示一栏中醒投资者,寒武纪无法保证未来几年内实现盈利,其上市后亦可能面临退市的风险。
正如寒武纪所言,其巨额亏损确实与研发大量投入有关。
2017年-2019年,其研发投入分别为2986.19万元、2.4亿元、5.43亿元,占营收比例分别为380.73%、205.18%和122.32%,累计投入8.13亿元,相当于三年累计营收的1.43倍。
截至2019年12月31日,寒武纪研发人员有680人,占比接近员工总数的80%;拥有硕士、博士学历的员工有546人,占比超60%。
与此同时,寒武纪的高研发投入也获得了相对可观的回报。
截至2020年2月29日,其已获授权的境内专利有50项,境外专利有15项,此外还有PCT专利申请120项,正在申请中的专利共有1474项。
在研发投入远超营收的情况下,可以说寒武纪目前的营运资金主要依赖外部融资。
招股书显示,2017年-2019年,寒武纪筹资活动产生的现金流量净额分别为4.96亿元、24.05亿元以及17亿元,总计为46.01亿元。
而前述年度下,寒武纪期末现金及现金等价物余额则分别为2.27亿元、13.54亿元以及3.83亿元。不难看出,其消化资金的速度有些惊人。
寒武纪还在招股书中称,由于未来几年将存在持续的大规模研发的投入,上市后未盈利的状态可能持续存在。因此,足够的运营资金对于持续高研发投入的寒武纪显得尤为重要。
招股书显示,寒武纪本次拟发行股份不超过4010万股,不低于发行后总股本的10%,融资28.01亿元,用于新一代云端训练芯片、云端推理芯片、边缘端人工智能芯片及系统项目和补充流动资金。
在持续高研发投入的背景下,寒武纪还要融资28亿,那现在应该很缺钱?
令人惊讶的是,截至2019年末,寒武纪货币资金余额为38.3亿元, 银行理财产品38.9亿元 ,资产负债率为6.68%,且全部为日常经营过程中产生的非付息债务,无银行借款等其他付息债务。
除此之外,寒武纪还有3.8亿元的银行存款。
值得注意的是,作为技术密集型企业,寒武纪的毛利率水平也较高。
2017年-2019年,其综合毛利率分别为99.96%、99.90%及68.19%。其中,终端智能处理器IP业务的毛利在99%以上。针对去年毛利率有所下降,招股书解释称,这是因为这一年拓展了新业务——云端智能芯片及加速卡、智能计算集群系统业务。
分道扬镳
提到寒武纪,不得不提的就是华为。
寒武纪在招股书中提到,其寒武纪1A、寒武纪1H分别应用于某全球知名中国 科技 企业的旗舰智能手机芯片中,已集成于超过1亿台智能手机及其他智能终端设备中。根据公开信息,其指的就是华为。
2017年,华为推出了移动处理器麒麟970,主打AI性能,其搭载的NPU IP就是来自寒武纪;次年的麒麟980,依然选择与寒武纪合作,Mate 10、Mate 20、P20等旗舰机,均搭载了后者的NPU。
作为寒武纪最大客户,2017年-2018年两年间,来自 公司A 的收入一直占其营收比例在98%上下,为其第一大客户。
招股书中提到,2018年 公司A 得到寒武纪授权,将寒武纪终端智能处理器IP集成于其旗舰智能手机芯片中。
艾瑞咨询则在一份报告中称:“仅从搭载麒麟970手机出货量来看,若授权费为5美元/片,则超过4000万台手机出货量为寒武纪带来约2亿美元(折合人民币14亿元)的收入。”
由于和华为的良好合作关系,寒武纪曾在2017年公开表示,计划3年后占有中国高性能智能芯片市场30%的份额,并使全世界10亿台以上的智能终端设备集成有寒武纪终端智能处理器。
不过,事情在2018年发生了变化。
当年10月,华为在全连接大会上发布了升腾910、升腾310两款AI芯片,其采用的是华为自研的达芬奇架构,而非寒武纪的方案。当时,这被媒体解读为“华为要与寒武纪做彻底的切割”,走向独立造芯之路。
次年6月,华为发布的nova 5搭载了中端移动处理器“麒麟810”,这是首款采用华为自研达芬奇架构的手机AI芯片;年底的麒麟990,依然采用的是前述架构,其在AIBenchMark跑分达到了麒麟980的476%。
近日,寒武纪CEO陈天石在接受采访时谈到与华为的合作关系称:其实我们和客户的关系一直挺好。还是我之前的观点,AI芯片大家都做,恰恰说明它重要。
针对华为已经在用自研的达芬奇架构,对其收入有何影响?
陈天石并没有正面回答,只是表示:“我们的收入增长很快,未来希望有机会向大家公开披露我们的财报。”
而寒武纪招股书中的数据显示,来自 公司A 的收入占比已经从2017年98.34%骤降到2019年的14.34%,比2018年大幅减少为6365万元,并从第一大客户降为第四大客户。
众所周知,华为是国内仅有的自研SoC的手机厂商。国内大部分的终端厂商不像华为一样自研AI芯片。
不过,有观点指出,如果寒武纪要进入vivo、OPPO等手机品牌,必须说服芯片供应商采用其产品,难度不小。
因此,寒武纪此后再未提及“三年占领三成市场”的目标。
寒武纪在招股书中称,2018年其终端智能处理器IP许可销售收入同比大幅增长,主要原因系人工智能技术和应用开始普及,采用该公司终端智能处理器IP的终端设备已实现规模化出货,使得其终端智能处理器IP许可销售收入大幅增加。
而2019年其终端智能处理器IP许可销售收入同比下降较大。
招股书中解释称,主要原因系2018年向 公司A 逐步交付了终端智能处理器IP,2019年固定费用模式的IP许可销售收入相应下降。
与此同时,寒武纪在招股书中还将华为海思列为了竞争对手。
寒武纪在招股书中坦言,与英伟达、英特尔、AMD等国际大型集成电路企业相比,其在整体规模、资金实力、研发储备、销售渠道等方面仍然存在着较大的差距。国内企业中如华为海思及其他芯片设计公司也日渐进入该市场,其面临着市场竞争进一步加剧的状况。
耐人寻味的是,寒武纪CTO梁军就出身华为,先后就职于华为公司北京研究所、华为海思半导体公司,于2017年跳槽到寒武纪。目前这位CTO是所有高管中薪资最高的一位,持股也达到了3.2%。
值得注意的是,在市场调研机构Compass Intelligence2018年发布的AIChipset Index TOP24榜单中,英伟达高居第一,华为海思排名12位,而寒武纪则是第23位。
事实上,除了华为,寒武纪的投资方之一阿里巴巴也是其强大的竞争对手,后者在2018年成立了“平头哥半导体有限公司”,整合了中天微系统有限公司和达摩院自研芯片业务。
次年7月,平头哥首颗智能芯片玄铁910发布,采用RISC-V架构瞄准端+云市场, 与寒武纪有高度重合 。
客户、供应商集中度高
“失去”华为的寒武纪,不再单独依赖IP授权,开始转向拓展云端智能芯片及加速卡业务与智能计算集群系统业务。
招股书中提到,2019年其拓展了云端智能芯片和加速卡、智能计算集群业务和相应的新客户,如服务器厂商、云服务厂商、企业和地方政府等,第一大客户销售占比下降,“实现了客户多元化”,已不存在向单个客户销售比例超过公司销售总额50%的情况。
寒武纪在招股书中透露,面向数据中心、云计算、边缘计算、移动终端、智能教育、智能制造、智能交通等多个领域,其已与紫光展锐、智芯微、浪潮、联想、阿里巴巴、百度、滴滴、好未来、金山云等众多国内知名公司分别就一个或多个领域开展深度合作。
2019年11月,寒武纪签下了珠海市横琴新区管理委员会商务局的智能计算平台(二期)项目,该合同总价高达4.4亿,当年直接为寒武纪带来了2亿营收。
另外,寒武纪还与西安沣东仪享 科技 服务有限公司、上海脑科学与类脑研究中心达成了智能集群系统的相关合作。
不过,寒武纪仍然面临着客户集中的风险。
其在招股书中介绍,2017-2019年,前五大客户的销售金额合计占营业收入比例分别为100.00%、99.95%和95.44%,客户集中度较高。若主要客户大幅降低对其产品的采购量或者其未能继续维持与主要客户的合作关系,将给其业绩带来显著不利影响。
据艾瑞咨询测算,芯片销售利润一般在每颗几美金,只有当产量达到千万量级时,芯片定价才能覆盖研发费用和芯片成本。
因此有分析称,作为专用芯片,寒武纪找到如此大规模的特定应用市场并不容易,收入很可能不足以支撑研发,这可能也是寒武纪寻求上市的主要原因。
除此之外,寒武纪采用Fabless模式经营,供应商包括IP授权厂商、服务器厂商、晶圆制造厂和封装测试厂等。2017年-2019年,其通过代理商采购芯片IP、EDA工具、晶圆及其他电子元器件等。
2017年-2019年,该公司向前五名直接供应商合计采购的金额分别为1422.28万元、20315.49万元和36271.17万元,占同期采购总额的比例分别为92.64%、82.53%和66.49%,占比相对较高。
其中,晶圆主要向台积电采购,芯片IP及EDA工具主要向Cadence、Synopsys和ARM等采购,封装测试服务主要向日月光、Amkor和长电 科技 采购,采购相对集中。
寒武纪提到,由于集成电路领域专业化分工程度及技术门槛较高,部分供应商的产品具有稀缺性和独占性,如不能与其保持合作关系,该公司短时间内难以低成本地切换至新供应商。
此外,寒武纪表示,未来若供应商业务经营发生不利变化、产能受限或合作关系紧张,或由于其他不可抗力因素不能与该公司继续进行业务合作,将对其生产经营产生不利影响。
本文系观察者网独家稿件,未经授权,不得转载。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)