半导体的电阻率的3个特点是什么

半导体的电阻率的3个特点是什么,第1张

半导体是导电能力介于导体和绝缘体之间的物质.它的重要特性表现在以下几个方面:

(1)热敏性

半导体材料的电阻率与温度有密切的关系.温度升高,半导体的电阻率会明显变小.例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半.

(2)光电特性

很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了.例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧.半导体受光照后电阻明显变小的现象称为“光导电”.利用光导电特性制作的光电器件还有光电二极管和光电三极管等.

近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能.目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管.

另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源.

(3)搀杂特性

纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化.例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米.因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件.

在同一电路中,导体中的电流跟导体两端的电压成正比,跟导体的电阻阻值成反比,这就是欧姆定律,基本公式是I=U/R。欧姆定律由乔治·西蒙·欧姆提出,为了纪念他对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。电阻的性质  乔治·西蒙·欧姆[1] 闭合回路功率与电阻关系由欧姆定律I=U/R的推导式R=U/I或U=IR不能说导体的电阻与其两端的电压成正比,与通过其的电流成反比,因为导体的电阻是它本身的一种属性,取决于导体的长度、横截面积、材料和温度、湿度(初二阶段不涉及湿度),即使它两端没有电压,没有电流通过,它的阻值也是一个定值。(这个定值在一般情况下,可以看做是不变的,因为对于光敏电阻和热敏电阻来说,电阻值是不定的。对于有些导体来讲,在很低的温度时还存在超导的现象,这些都会影响电阻的阻值,也不得不考虑。) 导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。(I=U:R)电阻的单位电阻的单位欧姆简称欧(Ω)。1Ω定义为:当导体两端电势差为1伏特(ν),通过的电流是1安培(Α)时,它的电阻为1欧 (Ω)。 公式标准式:R=U/I 部分电路欧姆定律公式: I=U/R 或I= U/R= GU(I=U:R)公式说明定义:在电压一定时,导体中通过的 其中G= 1/R,电阻R的倒数G叫做电导,其国际单位制为西门子(S)。 其中:I、U、R——三个量是属于同一部分电路中同一时刻的电流强度、电压和电阻。 欧姆定律(20张)I=Q/t 电流=电荷量/时间(单位均为国际单位制) 也就是说:电流=电压/ 电阻 或者电压=电阻×电流『只能用于计算电压、电阻,并不代表电阻和电压或电流有变化关系』适用范围欧姆定律适用于纯电阻电路,金属导电和电解液导电,在气体导电和半导体元件等中欧姆定律将不适用 公式I=E/(R+r)=(Ir+U)/(R+r) I-电流 安培(A) E-电动势伏特(V) R-电阻 欧姆(Ω) r-内电阻欧姆(Ω) U-电压伏特(V)公式说明其中E为电动势,R为外电路电阻,r为电源内阻,内电压U内=Ir,E=U内+U外 适用范围:只适用于纯电阻电路(像家庭电路均不是纯电阻电路)周期性激发电容器、电感器、传输线等等,都是电路的电抗元件。假设施加周期性电压或周期性电流于含有电抗元件的电路,则电压与电流之间的关系式变成微分方程。因为欧姆定律的方程只涉及实值的电阻,不涉及可能含有电容或电感的复值阻抗,所以,前面阐述的欧姆定律不能直接应用于这状况。 最基本的周期性激发,像正弦激发或余弦激发,都可以用指数函数来表达: 其中,j是虚数单位,ω是实值角频率,t是时间。 假设周期性激发为单频率正弦激发,其角频率为ω 。电阻为R的电阻器,其阻抗Z为 Z= R。电感为L的电感器,其阻抗为 Z= jωL。电容为C的电容器,其阻抗为 Z= 1 / jωC。电压V与电流I的关系式为 V= IZ。注意到将阻抗Z替代电阻R,就可以得到这欧姆定律方程的推广。只有Z的实值部分会造成热能的耗散。 对于这系统,电流和电压的复值波形式分别为 I= I0e^jωt 、V= V0e^jωt。电流和电压的实值部分real(I) 、real(V) 分别描述这电路的真实正弦电流和正弦电压。由于I0 、V0 都是不同的复值标量,电流和电压的相位可能会不一样。 周期性激发可以傅里叶分解为不同角频率的正弦函数激发。对于每一个角频率的正弦函数激发,可以使用上述方法来计算响应。然后,将所有响应总和起来,就可以得到解答。线性近似 但是,在有些电路元件不遵守欧姆定律,它们的电压与电流之间的关系(V-I线)乃非线性关系。PN接面二极管是一个显明范例。如右图所示,随着二极管两端电压的递增,电流并没有线性递增。给定外电压,可以用V-I线来估计电流,而不能用欧姆定律来计算电流,因为电阻会因为电压的不同而改变。另外,只有当外电压为正值时,电流才会显著地递增;当施加的电压为负值时,电流等于零。对于这类元件,V-I线的斜率欧姆定律是电路分析(circuit analysis)使用的几个基本方程之一。它可以应用于金属导电体或特别为这行为所制备的电阻器。在电机工程学里,这些东西无所不在。遵守欧姆定律的物质或元件称为“欧姆物质”或“欧姆元件”。理论上,不论施加的电压或电流、不论是直流或交流、不论是正极或负极,它们的电阻都不变。 ,称为“小信号电阻”(small-signal resistance)、“增量电阻”(incremental resistance)或“动态电阻”(dynamic resistance),定义为 ,单位也是欧姆,是很重要的电阻量,适用于计算非欧姆元件的电性研究欧姆定律需要注意的问题 1.分析闭合电路中的功率问题时就注意以下三个问题: (1)电流发生变化时,路端电压发生变化,功率比较与计算时不要忘记这一点. (2)利用当外电阻等于内阻时输出功率最大这一结论,必要时要将某一电阻看作内阻,作等效电源处理. (3)注意所求功率是电路中哪部分电路的功率,不同部分电路分析思路不同. 2.在直流电路中,当电容器充放电时,电路里有充放电电流,一旦电路达到稳定状态,电容器在电路中就相当于一个阻值无限大的元件,在电容器处电路看作是断路,简化电路时可去掉它.分析和计算含有电容器的直流电路时,需注意以下几点: (1)电容器两极板间的电压等于该支路两端的电压. (2)当电容器和用电器并联后接入电路时,电容器两极板间的电压与其并联用电器两端的电压相等. (3)电路的电流、电压变化时,将会引起电容器的充(放)电. (4)如果变化前后极板带的电性相同,那么通过每根引线的电荷量等于始末状态电容器电荷量的差如果变化前后极板带电的电性改变,那么通过每根引线的电荷量等于始末状态电容器的电荷量之和.[2] 相等 詹姆斯·麦克斯韦诠释欧姆定律为,处于某状态的导电体,其电动势与产生的电流成正比。因此,电动势与电流的比例,即电阻,不会随着电流而改变。在这里,电动势就是导电体两端的电压。参考这句引述的上下文,修饰语“处于某状态”,诠释为处于常温状态,这是因为物质的电阻率通常相依于温度。根据焦耳定律,导电体的焦耳加热(Joule heating)与电流有关,当传导电流于导电体时,导电体的温度会改变。电阻对于温度的相依性,使得在典型实验里,电阻相依于电流,从而很不容易直接核对这形式的欧姆定律。于1876年,麦克斯韦与同事,共同设计出几种测试欧姆定律的实验方法,能够特别凸显出导电体对于加热效应的响应。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/6175555.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-17
下一篇 2023-03-17

发表评论

登录后才能评论

评论列表(0条)

保存