1956年,我国提出“向科学进军”,根据国外发展电子器件的进程,提出了中国也要研究半导体科学,把半导体技术列为国家四大紧急措施之一。中国科学院应用物理所首先举办了半导体器件短期培训班。请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。在五所大学――北京大学、复旦大学、吉林大学、厦门大学和南京大学联合在北京大学开办了半导体物理专业,共同培养第一批半导体人才。培养出了第一批著名的教授:北京大学的黄昆、复旦大学的谢希德、吉林大学的高鼎三。1957年毕业的第一批研究生中有中国科学院院士王阳元(北京大学微电子所所长)、工程院院士许居衍(华晶集团中央研究院院长)和电子工业部总工程师俞忠钰(北方华虹设计公司董事长)。
1957年,北京电子管厂通过还原氧化锗,拉出了锗单晶。中国科学院应用物理研究所和二机部十局第十一所开发锗晶体管。当年,中国相继研制出锗点接触二极管和三极管(即晶体管)。
1958年,美国德州仪器公司和仙童公司各自研制发明了半导体集成电路(IC)之后,发展极为迅猛,从SSI(小规模集成电路)起步,经过MSI(中规模集成电路),发展到LSI(大规模集成电路),然后发展到现在的VLSI(超大规模集成电路)及最近的ULSI(特大规模集成电路),甚至发展到将来的GSI(甚大规模集成电路),届时单片集成电路集成度将超过10亿个元件。
1959年,天津拉制出硅(Si)单晶。
1960年,中科院在北京建立半导体研究所,同年在河北建立工业性专业化研究所――第十三所(河北半导体研究所)。
1962年,天津拉制出砷化镓单晶(GaAs),为研究制备其他化合物半导体打下了基础。
1962年,我国研究制成硅外延工艺,并开始研究采用照相制版,光刻工艺。
1963年,河北省半导体研究所制成硅平面型晶体管。
1964年,河北省半导体研究所研制出硅外延平面型晶体管。
1965年12月,河北半导体研究所召开鉴定会,鉴定了第一批半导体管,并在国内首先鉴定了DTL型(二极管――晶体管逻辑)数字逻辑电路。1966年底,在工厂范围内上海元件五厂鉴定了TTL电路产品。这些小规模双极型数字集成电路主要以与非门为主,还有与非驱动器、与门、或非门、或门、以及与或非电路等。标志着中国已经制成了自己的小规模集成电路。
1968年,组建国营东光电工厂(878厂)、上海无线电十九厂,至1970年建成投产,形成中国IC产业中的“两霸”。
1968年,上海无线电十四厂首家制成PMOS(P型金属-氧化物半导体)电路(MOSIC)。拉开了我国发展MOS电路的序幕,并在七十年代初,永川半导体研究所(现电子第24所)、上无十四厂和北京878厂相继研制成功NMOS电路。之后,又研制成CMOS电路。
七十年代初,IC价高利厚,需求巨大,引起了全国建设IC生产企业的热潮,共有四十多家集成电路工厂建成,四机部所属厂有749厂(永红器材厂)、871(天光集成电路厂)、878(东光电工厂)、4433厂(风光电工厂)和4435厂(韶光电工厂)等。各省市所建厂主要有:上海元件五厂、上无七厂、上无十四厂、上无十九厂、苏州半导体厂、常州半导体厂、北京半导体器件二厂、三厂、五厂、六厂、天津半导体(一)厂、航天部西安691厂等等。
1972年,中国第一块PMOS型LSI电路在四川永川半导体研究所研制成功。
电子发烧友网报道(文/李弯弯)日前,印度政府批准了一项100亿美元的激励计划,吸引全球半导体和显示器制造商到印度建立工厂。根据该计划,印度政府将向符合资质的显示器和半导体制造商提供高达项目成本50%的财政支持。据外媒报道,以色列的高塔半导体(Tower)、中国台湾的富士康和新加坡的一个财团都已经表示很有兴趣在印度设立芯片工厂。印度庞大的市场和低成本劳动力,对于引进半导体制造厂商带来了有很大的吸引力,同时印度在芯片制造工厂的建设上也存在很多的难点。
当前智能手机、笔记本电脑、电子设备、物联网设备和新型 汽车 等数字产品的市场快速增长,对半导体的需求急剧增加,而作为全球第二大电子产品制造基地,目前基本没有半导体制造业,对半导体的大量需求全部依赖进口。
有数据显示,预计到2025年印度进口规模将从目前的240亿美元增至1000亿美元。
2020年至今新冠疫情及全球芯片严重供不应求,让印度深刻感知到本土芯片制造缺失给整个国家产业和经济发展带来了严重影响,因此印度政府迅速推出激励政策,希望能够建立完善的半导体生态系统。
据印媒报道,印度政府还批准了另一项半导体产业激烈计划,支持100家本土半导体设计公司从事集成电路和芯片组设计,预计该计划将创造约3.5万个高质量工作岗位,10万个间接就业岗位,并吸引价值约合88亿美元的投资。
印度技术部长Ashwini Vaishnaw表示,总理(纳伦德拉·莫迪)做出了一项 历史 性决定,这将有助于本国发展完整的半导体生态系统,从半导体芯片的设计到制造、包装和测试。
印度奥普蒂默斯电子公司董事总经理古鲁拉杰表示,政府的计划将有助于先进技术、更多就业机会和投资进入印度,同样有助于削减昂贵的技术进口成本。
除了本次的政策和资金支持,印度本身庞大的市场和劳动力就具备一定的吸引力,近年来中美贸易摩擦,给东南亚很多国家带来了利好机会,印度则是其中受益国家之一。
据行业人士分析,印度想要参与半导体产业的竞争,很大可能会走从低端向高端产品发展的路线,而在发展较为低端的产品上,印度庞大的人力资源以及成本较低的劳动力,可以让它在相对较短的时间,通过劳动密集性产出半导体产品,从而实现较快发展。
而且印度在发展制造方面有过成功经验,此前印度政府提供约300亿美元的激励措施,吸引全球电子产品制造商在印度设立工厂,这一举措帮助印度成为仅次于中国的全球第二大智能手机制造地。而这其实某种程度证明印度在发展制造发面存在的天然优势。
这对与高塔半导体、富士康等厂商来说具备一定的吸引力。高塔半导体是以色列晶圆代工厂,在全球三个国家和地区拥有七座晶圆厂,包括在以色列拥有两座晶圆厂,在美国拥有两座晶圆厂,在日本拥有三座晶圆厂。据了解高塔半导体在模拟芯片代工方面处于全球领先位置。
近年来高塔半导体在全球晶圆代工领域的市场占比和排名逐步下降,根据拓墣产业研究院的调查数据,2019年第四季度高塔半导体在全球晶圆代工厂中排名第六,市场占有率为1.6%,到2021年第三季度排名降到第九,市场占有率下降为1.4%。
其中最主要的原因是中国的华虹半导体的市场占比大幅提升,从从1.1%大幅增长到2.8%,排名从第九名跃迁到第六。另外力积电、世界先进的市场占比也有一定提升。
也因此高塔半导体近年来在全球范围寻求建设更多工厂来提升产能,2020年2月,高塔半导体看准中国市场的潜力,与中国合肥政府签约,将在合肥建设一座12寸模拟芯片代工厂。
2021年6月,高塔半导体与意法半导体签订合作协议,将加入意法半导体在意大利Agrate Brianza 厂区在建的Agrate R3 300mm 晶圆厂项目,该晶圆厂预计将在今年年底准备安装设备,2022年下半年开始生产。
高塔半导体首席执行官 Russell Ellwanger 表示:Agrate的生产活动将会显著提高Tower 65 纳米300毫米晶圆模拟射频、功率平台、显示芯片等产品的订单执行力,将Tower的300毫米晶圆代工厂产能提高两倍以上。
而印度在本身庞大的市场和劳动力优势下,可能本身就对高塔半导体存在吸引力,同时在全球芯片产能严重不足的当下,印度为了吸引半导体企业到当地建厂,提供政策和资金方面的支持,这无疑有利于高塔半导体在节约成本的情况下扩大扩大产能。
中国台湾的富士康是全球知名的代工厂,近些年积极进入半导体领域,富士康在半导体方面的动作很快,前不久富士康青岛高端封测项目正式举行投产仪式,完成了封测工厂的建设,而接下来可以预想富士康可能会进行半导体制造工厂的筹备计划。
而此番印度政府给予激励政策和资金支持计划,这对富士康来说是个绝好的消息。而且富士康本身对印度市场就很熟悉,此前因为苹果需要发展印度市场,富士康作为苹果最大的代工厂,也跟随苹果在印度设立工厂。可以说印度对富士康建设芯片工厂具有很大的吸引力。
不过即使优点显著,然而在印度建设芯片工厂也存在很大困难,印度《商业标准报》此前对外企投资印度半导体产业的前景分析时谈到,二十多年来,印度一直憧憬着能够吸引半导体制造巨头在印度建厂,走上迈向芯片大国的道路,但印度梦想的事从未发生过。
为什么呢,据《商业标准报》分析,在印度建立芯片制造厂的企业会遭遇与二十多年前类似的配套环境混乱局面。稳定可靠的电力供应是半导体生产的最关键要素,因为加工过程非常精细,极短时间的停电或者电压不稳都能导致停工,但印度在供电方面问题百出。
其他的障碍包括充足的水供应、交通基础设施、成熟的工人都难以保证。有分析称,印度有大量的芯片设计从业人员,但程序工程师非常短缺而且不善于运营芯片工厂。
这问题其实在早前发展电子制造业方面也已经体现出来,据报道,很多企业在印度投资建设工厂都不是很顺利,虽然印度具有庞大的消费市场,但是水电、道路方面的设施问题,需投投资企业自己去解决。
另外虽然印度有大量的人力资源,且劳动力成本不高,比如同样的岗位,在中国需要四五千块钱,在印度可能一两千块钱就可以解决,然而他们却不那么好管理,一旦企业要求他们加班或做出一些不符合他们意愿的举动,随时可能迎来大面积的罢工,让企业陷入停工停产。
可以看到水电、道路设施等对于芯片制造是很大的问题,人力方面除了劳动力不好管理之外,芯片制造对于人才在技术和经验方面的要求可能会比一般制造更高,而这应该也是印度市场比较缺失的,因此对于印度来说,印度政府如果想要发展芯片制造产业,除了给予资金政策方案的支持之外,更需要多的是思考如何解决上述这些难题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)