5月22号,《科学》杂志发表了一篇来自北京大学的研究进展,北大的张志勇-彭练矛教授课题组制备出了一种高密度、高纯度的半导体碳纳米管阵列。并且以此为基础,首次制作出了性能超越同等条件下传统硅芯片的碳纳米管器件。这一项成果,预示着用碳材料取代现有的硅材料,来制作下一代芯片的技术思路,距离实用化又近了一大步。
上面这段描述,有很多专业名词。不熟悉芯片技术的读者,听了之后可能有点迷糊。因此,我想带你站在芯片发展的 历史 ,来看一下这项研究背后的来龙去脉。
你很自然地就会有一个疑问——为什么今天一部分科学家迫不及待地想要抛弃硅材料呢?要知道用硅来制作芯片已经半个多世纪了,就连芯片的诞生地都被叫做硅谷。
这背后的原因,我们其实此前也反复讲过,就是摩尔定律。摩尔定律的表达方式很多,简单来说就是,根据产业经验,芯片的性能每12-18个月就要翻一倍。虽然这只是一条产业经验,不是什么科学原则,但是从1965年被提出以来,就一直在指导芯片的发展。
在这半个多世纪的时间里,延续摩尔定律最主要的手段之一,就是把芯片里面最基础组成的单元——也就是硅片上的晶体管越做越小。所以你听到的所谓22nm、14nm、10nm、7nm这些芯片,里面这个多少纳米指的就是芯片里面以硅材料为基础的晶体管的大小。
但是话又说回来,摩尔定律毕竟不是一条科学法则,把硅片上的晶体管越做越小是会遇到物理极限的。这个极限尺度具体是多少,产业界其实也一直在摸索。最近我刚好请教过一些业内资深的工程师,目前他们感觉硅材料芯片的极限制程差不多是在2nm到1.5nm。
在这个极限尺度之后,通过缩小晶体管来延续摩尔定律的思路,就不行了。至于硅晶体管为什么不能更小的原因,简单来说,就是因为硅的一些特性,如果晶体管太小,出故障的概率就会急剧升高,把芯片里面上百亿个晶体管协调起来一起工作就非常困难。
那既然把晶体管变小的这个思路不能用了,可是祖师爷的摩尔定律又不能丢,怎么办呢?如何延续摩尔定律,可以说是当今芯片产业的天字第一号问题。怎么解决这个问题,如今呢就有很多流派。其中很重要的一个流派,就是说我们干脆换个材料吧,不要再用硅做晶体管了,用碳材料。
为什么这些科学家认为可以用碳元素呢?其实啊,这跟碳元素本身很多优质的特性有关。比如,用碳纳米管做的晶体管,它的电子迁移率可以是硅的1000倍,通俗来说就是碳材料里面电子的群众基础更好。再比如,碳纳米管里面的电子自由程特别长,通俗的理解就是电子的活动更自由,不容易摩擦发热。
由于这些底层的优点,用碳来做晶体管,甚至不用像硅晶体管那么小,就可以取得同等水平的性能。比如美国国防部2018年支持的一项研究,就希望用90nm规格的碳芯片,实现7nm规格的硅芯片同等的性能。
这里再补充一句,即便是用碳来做芯片,也是有很多思路的。不过坦率地说,这些思路大部分还都处在 探索 阶段。而最接近实用化的,就是北京大学这项研究中涉及的碳纳米管芯片这个领域。
早在2013年,美国斯坦福大学就制造出了第一台碳纳米管计算机;而到了2019年8月,美国麻省理工学院发布了全球第一款碳纳米管通用计算芯片,里面包含14000个晶体管。《自然》杂志当时连发三篇文章推荐这项成果,可见当时的轰动性。
不过你可能也听出来了,即便是去年麻省理工学院发表的这项轰动性的研究,也只包含14000个碳晶体管。这比起现在手机芯片里面动不动就上百亿个晶体管的规模,还差着很远——究竟是哪出了问题呢?
这里面的症结,就在制造工艺四个字上。要想制造出性能比肩商用器件的碳纳米管芯片,一个重要的前提就是你得能制造出,高纯度、高密度、排列整齐的碳纳米管阵列。
一旦碳纳米管阵列的纯度、密度不够高,或者排列不整齐,就很难可靠地制造出上亿个晶体管这种规模的商用芯片,因为保不齐哪个晶体管就会出现故障。麻省理工在2019年发布的这项研究,所用到碳纳米管阵列的纯度只有四个九,也就是99.99%。而人们猜测这个纯度至少应该在六到八个九的时候,才能够让碳纳米管芯片的性能比肩传统芯片。
讲了这么半天,就要说到北京大学上个月的这项研究了。北大张志勇-彭练矛教授的科研团队,通过独创的制备工艺,在4英寸的基底上,制备出密度为120/μm、纯度高达六个九,也就是99.9999%的碳纳米管阵列。在密度和纯度这两个重要的指标上,比过去的类似的研究高出了1-2个量级。
并且基于这种高品质的碳管阵列,研究人员还批量制作出了相应的晶体管和环形振荡器来验证这种新工艺的批量生产潜力。实验发现,这些晶体管和环形震荡器的性能,首次超过了同等尺寸下的传统硅芯片里面的器件,证明了碳芯片确实有可能比硅芯片更强。
碳纳米管芯片一旦在未来走向产业应用,由于在功耗和性能上的优势,很有可能应用在手机和5G基站这样的场景中。甚至在人体内部、国土边疆,还有太空这样对于能耗要求比较苛刻的场景,也有广泛的应用潜力。比如,芯片的能耗如果能够继续下降两个量级,就可以利用像是人的体液、体温这类非常细微的能量来源进行供电,使用的场景会比现在的消费电子产品更加广阔。
特别值得一提的是,这项研究的通讯作者彭练矛院士,在碳基纳电子领域深耕将近20年。他为我国保留了在芯片领域碳纳米管芯片这条赛道上,换道超车的可能性。这也是我在本月为你推荐这项进展的原因。
本月的硬 科技 报告就到这里,我们下一期再见!
事实上,碳基半导体晶体管最先是由美国与荷兰科学家在1998年制造出来的,截止到2006年之前,我国在碳纳米管晶体管上并没有明显的建树。可以说,我国对碳纳米管晶体管的研究开始于2000年,7年之后才制备出了性能超越硅晶体管的N型碳纳米管晶体管。由此可知,国外的碳纳米管晶体管的研究要比我们早的多,但是到了今天我们与国外的差距远没有硅晶体管那么大,甚至有超越国外的趋势。
总体而言,国外对碳纳米管晶体管的研究,还是比我们要领先的。在2013年,MIT研究团队发表了由178个晶体管组成的只能执行简单指令的碳纳米管计算机。在2019年,MIT团队已能制造完整的由14000个碳纳米管晶体管组成的处理器了。而国内于2017年制造了基于2500个碳纳米管晶体管的处理器,整体性能相当于因特尔4004的水平。至于在2019年国内是否研发出了集成更多碳纳米管晶体管的处理器,目前尚未有报道。
由于碳纳米管较容易聚合在一起,所以MIT团队利用了一种剥落工艺防止碳纳米管聚合在一起,以防晶体管无法正常工作。要知道MIT团队制造的CPU主频只有1Mhz,早期的80386处理器的频率还有16Mhz,也不是说2019年碳纳米管制造的计算机性能,仅相当于1985年制造的硅晶体管处理器的性能,这差距就太大了。离实用化,还有较长的一段路要走。因为碳纳米管晶体管之间的沟道和碳纳米管晶体管的体积过大,导致碳纳米管晶体管可以容纳的电流较小,容纳得电荷较少。MIT制造的由14000个碳纳米管晶体管组成的处理器中的沟道宽度为1.5微米,与现在纳米级相距较远。也只有缩小碳纳米管晶体管的体积和减小沟道的距离,才可以提升整体性能。
但是国内于2017年,就研制出了栅长为5纳米的碳纳米管晶体管,近日又研发出了栅长3纳米的碳纳米管晶体管。可以说,国内在碳纳米管晶体管的小型化上走的比较远。在2007年左右,国内以碳纳米管晶体管制造的处理器主频就高达5Ghz,要比国外2019年制造等我处理器主频高的多。从国外的相关产品来看,其碳纳米管栅长究竟达到了何种地步,也说不准。只不过,由此可知,在碳纳米管的研发上,国内技术最起码不会差国外技术太多,很有可能是同步发展的。
【碳基半导体芯片真的能够助力我国芯片突破西方禁锢?从此不依赖ASML吗?】
我们应该看到了近期的新闻,2020年5月26日,北京元芯碳基集成电路研究院宣布,解决了长期困扰碳基半导体材料制备的瓶颈! 该消息一出,瞬间引起了我们的关注,于是我们扎堆的认为, 碳基半导体芯片一定能够助力我国芯片的突破,打破西方禁锢?从此不依赖ASML。
了解现状——西方国家垄断的是硅基材料,而这些硅基材料在我国,我们的优势非常的低;一些关键性的材料还是倍国家技术给垄断的。而此时,我们想要打破束缚,就必须要寻找新的思路,于是出现了我们期待的:碳基半导体能否替代未来的硅基材料呢?
其实,有专家表示,北由于碳分子结构稳定,很难像硅材料一样通过掺杂其他物质改变性能。因此,碳纳米管要实现产业化,尚有很长一段路要走。不过,如今,北京元芯碳基集成电路研究院的突破确实给了我们很大的希望。
碳基半导体具有成本更低、功耗更小、效率更高。如果能够打破硅基半导体材料的束缚,走出一条全新的碳基半导体路,我们的芯片发展可能更有意义。
其实,以碳纤维(织物)或碳化硅等陶瓷纤维(织物)为增强体,实际上,我们熟知的石墨烯,生物碳以及碳纳米管等等都属于碳基材料。因此,想要碳基材料真正的运用与我们的实际,确实还是有一段路走,可是我们也已经进了一步了。
在芯片处理中, 碳基技术芯片 速度提升,功耗降低,未来更能够运用于多种领域,比如国防,气象,以及我们现在急需要解决的手机芯片,计算机芯片问题。这里我们得知道,相比国外技术, 我国对于碳基技术研究时间早,目前的技术是基于二十年前彭练矛院士提出的无掺杂碳基CMOS技术发展而来。
因此,我们不担心倍国外的技术给限制,因为我们的技术具有前瞻性,确实我们的芯片技术目前还是受限制,特别是ASML的光刻机,因为缺乏技术,在工艺制程方面受到制约。
因此,我们猜测的是,碳基材料未来很有可能打破ASML光刻机的束缚,打破欧美国家芯片的束缚,打造属于我们的芯片技术。
谢谢您的问题。碳基芯片在全球范围内还在朝量产迈进。
碳基芯片目前处于实验室阶段。 IBM和英特尔已经碳基在理论进行了多年的 探索 ,英特尔无果而放弃。IBM与英特尔退而求其次,用的是“掺杂”工艺制备碳纳米管晶体管。在国内,彭练矛和张志勇教授团队在半导体碳碳基半导体材料制备方面取得了研究重大进展,已经领先于全球,但也只是朝产业化进一步迈进。
实验室的成果离现实还很远 。全球碳基芯片真正要实现落地、商品化,除了雄厚的资金,必须要有现有的芯片兼容,直接借用现有半导体产业流程工艺,就可以大大加快碳基芯片产业化进程。
碳基技术需要企业参与 。北京碳基集成电路研究院以前在碳基技术上走在了前列,未来10年发展至少需要20亿元研发投入,这需要企业产研对接,需要企业认识其中的价值。阿里巴巴、腾讯都计划投入数千亿元用于新基建,参与到云服务和芯片全线布局,希望这样的 科技 龙头企业参与“碳基”集成电路,有助于缩短国内碳基技术的商用时间,站在全球视角, 科技 企业及早介入非常重要。
欢迎关注,批评指正。
首先,国外的研究并没有啥进展,因为没有企业投钱,高通的芯片利润这么高,谁会把大把的钱投到一个还不知道成不成功的项目上?
处于 探索 期,技术还远不成熟,距成熟产品路还很远。
碳基芯片毕竟停留在实验室,商业前景不明朗,至少在未来5到7年里,或者说没有庞大的市场需求驱动,企业应该没有什么动力去为碳基芯片的商业应用进行大量投入。简而言之,没有真正引发全球业界强烈的共鸣,一个巴掌拍不响的。▲2018至2025年,各制程工艺在台积电营收中的贡献变化当前半导体行业中的光刻机、EDA软件设计工具、测试仪器、生产工艺流程等是否可用于制造碳基芯片?彭练矛院士说:“使用率大约能达到80%~90%,但碳管材料的清洗、刻蚀等步骤需要特殊处理,碳管器件的模型需要单独建立。”换言之,当硅基芯片在工艺上达到极限、再也无法突破,转而投向碳基芯片,那么业界要推动碳基芯片继续缩小节点,还必须要仰赖其他环节。例如光刻机,光刻机在硅基半导体晶圆制造成本中可是占到大约一半。一方面,中国(包括政府、科研机构和企业等在内)围绕硅基芯片总计投入的人力、物力和财力非常之大,涉及原材料、半导体机台设备、开发设计、生产制造、封装测试等几乎所有环节,从国家层面考虑,目的不外乎是尽可能缩小与国际领先之间的差距,同时为培育出大量本土人才创造条件。中国在集成电路领域投入如此之大,尚没有好好消化、完全吃透,实现应有的回报。但另一方面,中国半导体产业在原材料、半导体生产设备、软件设计工具等环节相对滞后也是事实,而且高度依赖国外厂商。最致命的还是,高端专业人才稀缺,仍需大量引进。在此情况下,就算中国本土半导体上中下游企业肯齐心协力转向碳基芯片,希望抢先国外一步实现所谓的“弯道超车”,也不能不考虑各种可能的风险。例如,华为与台积电本来合作得非常愉快,但美国企图彻底阻止台积电为华为代工芯片。况且,彭练矛院士自己也说:“现代芯片制备有上千个步骤,其中一步做不好,就没有好的产品。最后是一个系统优化的问题,材料、器件、芯片设计等密不可分。”另外,彭练矛教授还说过:“碳纳米管的制造乃至商用,面临最大的问题还是决心,国家的决心。若国家拿出支持传统集成电路技术的支持力度,加上产业界全力支持,3-5年应当能有商业碳基芯片出现,10年以内碳基芯片开始进入高端、主流应用。”根据已公开的信息(碳基的一些优势在此省去不说了),碳基芯片是半导体产业的方向之一,但不能确定就是技术发展的唯一必然方向。不过,业界确实可以从最简单的商业应用开始尝试做起,从简单到复杂,从低端到高端,从小范围到大范围,从专业特定领域到全范围推广。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)