掺杂和缺陷均可造成导带中电子浓度的增高。对于锗、硅类半导体材料,掺杂Ⅴ族元素(磷、砷、锑等),当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主。Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素。某些氧化物半导体,如氧化锌、五氧化二钽等,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度,这表现为更强的电子导电性。
1、形成原因不同
在半导体中掺入施主杂质,就得到N型半导体;施主杂质:周期表第V族中的某种元素,例如砷或锑。
在半导体中掺入受主杂质,就得到P型半导体;受主杂质:周期表中第Ⅲ族中的一种元素,例如硼或铟。
2、导电特性不同
P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。
N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。
3、定义不同
N型半导体,也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。 “N”表示负电的意思,取自英文Negative的第一个字母。在这类半导体中,参与导电的 主要是带负电的电子,这些电子来自半导体中的施主。
P型半导体,也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。
主要特点:
半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。
在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
在光照和热辐射条件下,其导电性有明显的变化。
晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)