世界上十大半导体公司分别为:
1、美国英特尔(Intel)公司,以生产CPU芯片闻名于世。
2、韩国的三星(Samsung)电子公司成立于1969年,初期主要生产家用电子产品,如电视机和录像机等。
3、美国的德州仪器(TI)公司是一家全球性的半导体公司,是世界领先的数字信号处理和模拟技术的设计商、供应商,是推动电子数字化进程的引擎。
4、日本的东芝(Toshiba)在国际市场上盛名远扬,家喻户晓。
5、中国台湾的台积电(TSMC)成立于1987年,是全球最大的专业集成电路制造服务公司。身为专业集成电路制造服务业的创始者与领导者,TSMC在提供先进晶圆制程技术与最佳的制造效率上已建立声誉。
6、意大利和法国的意法半导体会(ST)是全球性的独立半导体制造商。公司设计、生产、销售一系列半导体IC和分立器件,用于远程通讯系统、计算机系统、消费电子产品、汽车和工业自动化控制系统。
7、日本的瑞萨科技(Renesas)在2003 年4 月1 日正式成立,以领先的科技实现人类的梦想。
8、韩国的海力士(Hynix)1983年开始运作,目前已经发展成为世界级电子公司,拥有员工约22,000人,1999年总资产达20万亿。
9、日本的索尼(Sony)半导体分部是索尼电子公司1995年3月在美国加州圣约瑟市建立的一个分部,该分部使索尼公司能够对变幻莫测、竞争激烈的美国半导体市场迅速做出反应,为索尼电子公司发展高附加值的通讯、音频/视频、计算机应用产品提供后备支持。
10、美国的高通(Qualcomm)公司开发、销售一系列高性能FPGA半导体产品和软件开发工具。
扩展资料
半导体
半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。
无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种
参考资料:百度百科-半导体
简介半导体器件(semiconductor device)通常,利用不同的半导体材料、采用不同的工艺和几何结构,已研制出种类繁多、功能用途各异的多种晶体二极体,晶体二极体的频率覆盖范围可从低频、高频、微波、毫米波、红外直至光波。三端器件一 般是有源器件,典型代表是各种电晶体(又称晶体三极体)。电晶体又可以分为双极型电晶体和场效应电晶体两 类。根据用途的不同,电晶体可分为功率电晶体微波电晶体和低噪声电晶体。除了作为放大、振荡、开关用的 一般电晶体外,还有一些特殊用途的电晶体,如光电晶体、磁敏电晶体,场效应感测器等。这些器件既能把一些 环境因素的信息转换为电信号,又有一般电晶体的放大作用得到较大的输出信号。此外,还有一些特殊器件,如单结电晶体可用于产生锯齿波,可控矽可用于各种大电流的控制电路,电荷耦合器件可用作摄橡器件或信息存 储器件等。在通信和雷达等军事装备中,主要靠高灵敏度、低噪声的半导体接收器件接收微弱信号。随着微波 通信技术的迅速发展,微波半导件低噪声器件发展很快,工作频率不断提高,而噪声系数不断下降。微波半导体 器件由于性能优异、体积小、重量轻和功耗低等特性,在防空反导、电子战、C(U3)I等系统中已得到广泛的套用 。
分类 晶体二极体晶体二极体的基本结构是由一块 P型半导体和一块N型半导体结合在一起形成一个 PN结。在PN结的交界面处,由于P型半导体中的空穴和N型半导体中的电子要相互向对方扩散而形成一个具有空间电荷的偶极层。这偶极层阻止了空穴和电子的继续扩散而使PN结达到平衡状态。当PN结的P端(P型半导体那边)接电源的正极而另一端接负极时,空穴和电子都向偶极层流动而使偶极层变薄,电流很快上升。如果把电源的方向反过来接,则空穴和电子都背离偶极层流动而使偶极层变厚,同时电流被限制在一个很小的饱和值内(称反向饱和电流)。因此,PN结具有单向导电性。此外,PN结的偶极层还起一个电容的作用,这电容随着外加电压的变化而变化。在偶极层内部电场很强。当外加反向电压达到一定阈值时,偶极层内部会发生雪崩击穿而使电流突然增加几个数量级。利用PN结的这些特性在各种套用领域内制成的二极体有:整流二极体、检波二极体、变频二极体、变容二极体、开关二极体、稳压二极体(曾讷二极体)、崩越二极体(碰撞雪崩渡越二极体)和俘越二极体(俘获电浆雪崩渡越时间二极体)等。此外,还有利用PN结特殊效应的隧道二极体,以及没有PN结的肖脱基二极体和耿氏二极体等。
双极型电晶体它是由两个PN结构成,其中一个PN结称为发射结,另一个称为集电结。两个结之间的一薄层半导体材料称为基区。接在发射结一端和集电结一端的两个电极分别称为发射极和集电极。接在基区上的电极称为基极。在套用时,发射结处于正向偏置,集电极处于反向偏置。通过发射结的电流使大量的少数载流子注入到基区里,这些少数载流子靠扩散迁移到集电结而形成集电极电流,只有极少量的少数载流子在基区内复合而形成基极电流。集电极电流与基极电流之比称为共发射极电流放大系数?。在共发射极电路中,微小的基极电流变化可以控制很大的集电极电流变化,这就是双极型电晶体的电流放大效应。双极型电晶体可分为NPN型和PNP型两类。
场效应电晶体它依靠一块薄层半导体受横向电场影响而改变其电阻(简称场效应),使具有放大信号的功能。这薄层半导体的两端接两个电极称为源和漏。控制横向电场的电极称为栅。
根据栅的结构,场效应电晶体可以分为三种:
①结型场效应管(用PN结构成栅极)
②MOS场效应管(用金属-氧化物-半导体构成栅极,见金属-绝缘体-半导体系统)
③MES场效应管(用金属与半导体接触构成栅极)其中MOS场效应管使用最广泛。尤其在大规模积体电路的发展中,MOS大规模积体电路具有特殊的优越性。MES场效应管一般用在GaAs微波电晶体上。
在MOS器件的基础上,又发展出一种电荷耦合器件 (CCD),它是以半导体表面附近存储的电荷作为信息,控制表面附近的势阱使电荷在表面附近向某一方向转移。这种器件通常可以用作延迟线和存储器等配上光电二极体列阵,可用作摄像管。
命名方法中国半导体器件型号命名方法
半导体器件型号由五部分(场效应器件、半导体特殊器件、复合管、PIN型管、雷射器件的型号命名只有第三、四、五部分)组成。五个部分意义如下:
第一部分:用数字表示半导体器件有效电极数目。2-二极体、3-三极体
第二部分:用汉语拼音字母表示半导体器件的材料和极性。表示二极体时:A-N型锗材料、B-P型锗材料、C-N型矽材料、D-P型矽材料。表示三极体时:A-PNP型锗材料、B-NPN型锗材料、C-PNP型矽材料、D-NPN型矽材料。
第三部分:用汉语拼音字母表示半导体器件的类型。P-普通管、V-微波管、W-稳压管、C-参量管、Z-整流管、L-整流堆、S-隧道管、N-阻尼管、U-光电器件、K-开关管、X-低频小功率管(F<3MHz,Pc3MHz,Pc<1W)、D-低频大功率管(f1W)、A-高频大功率管(f>3MHz,Pc>1W)、T-半导体晶闸管(可控整流器)、Y-体效应器件、B-雪崩管、J-阶跃恢复管、CS-场效应管、BT-半导体特殊器件、FH-复合管、PIN-PIN型管、JG-雷射器件。
第四部分:用数字表示序号
第五部分:用汉语拼音字母表示规格号
例如:3DG18表示NPN型矽材料高频三极体
日本半导体分立器件型号命名方法
日本生产的半导体分立器件,由五至七部分组成。通常只用到前五个部分,其各部分的符号意义如下:
第一部分:用数字表示器件有效电极数目或类型。0-光电(即光敏)二极体三极体及上述器件的组合管、1-二极体、2三极或具有两个pn结的其他器件、3-具有四个有效电极或具有三个pn结的其他器件、┄┄依此类推。
第二部分:日本电子工业协会JEIA注册标志。S-表示已在日本电子工业协会JEIA注册登记的半导体分立器件。
第三部分:用字母表示器件使用材料极性和类型。A-PNP型高频管、B-PNP型低频管、C-NPN型高频管、D-NPN型低频管、F-P控制极可控矽、G-N控制极可控矽、H-N基极单结电晶体、J-P沟道场效应管、K-N 沟道场效应管、M-双向可控矽。
第四部分:用数字表示在日本电子工业协会JEIA登记的顺序号。两位以上的整数-从"11"开始,表示在日本电子工业协会JEIA登记的顺序号不同公司的性能相同的器件可以使用同一顺序号数字越大,越是产品。
第五部分: 用字母表示同一型号的改进型产品标志。A、B、C、D、E、F表示这一器件是原型号产品的改进产品。
美国半导体分立器件型号命名方法
美国电晶体或其他半导体器件的命名法较混乱。美国电子工业协会半导体分立器件命名方法如下:
第一部分:用符号表示器件用途的类型。JAN-军级、JANTX-特军级、JANTXV-超特军级、JANS-宇航级、(无)-非军用品。
第二部分:用数字表示pn结数目。1-二极体、2=三极体、3-三个pn结器件、n-n个pn结器件。
第三部分:美国电子工业协会(EIA)注册标志。N-该器件已在美国电子工业协会(EIA)注册登记。
第四部分:美国电子工业协会登记顺序号。多位数字-该器件在美国电子工业协会登记的顺序号。
第五部分:用字母表示器件分档。A、B、C、D、┄┄-同一型号器件的不同档别。如:JAN2N3251A表示PNP矽高频小功率开关三极体,JAN-军级、2-三极体、N-EIA 注册标志、3251-EIA登记顺序号、A-2N3251A档。
国际电子联合会半导体器件型号命名方法
德国、法国、义大利、荷兰、比利时等欧洲国家以及匈牙利、罗马尼亚、南斯拉夫、波兰等东欧国家,大都采用国际电子联合会半导体分立器件型号命名方法。这种命名方法由四个基本部分组成,各部分的符号及意义如下:
第一部分:用字母表示器件使用的材料。A-器件使用材料的禁频宽度Eg=0.6~1.0eV 如锗、B-器件使用材料的Eg=1.0~1.3eV 如矽、C-器件使用材料的Eg>1.3eV 如砷化镓、D-器件使用材料的Eg<0.6eV 如锑化铟、E-器件使用复合材料及光电池使用的材料
第二部分:用字母表示器件的类型及主要特征。A-检波开关混频二极体、B-变容二极体、C-低频小功率三极体、D-低频大功率三极体、E-隧道二极体、F-高频小功率三极体、G-复合器件及其他器件、H-磁敏二极体、K-开放磁路中的霍尔元件、L-高频大功率三极体、M-封闭磁路中的霍尔元件、P-光敏器件、Q-发光器件、R-小功率晶闸管、S-小功率开关管、T-大功率晶闸管、U-大功率开关管、X-倍增二极体、Y-整流二极体、Z-稳压二极体。
第三部分:用数字或字母加数字表示登记号。三位数字-代表通用半导体器件的登记序号、一个字母加二位数字-表示专用半导体器件的登记序号。
第四部分:用字母对同一类型号器件进行分档。A、B、C、D、E┄┄-表示同一型号的器件按某一参数进行分档的标志。
除四个基本部分外,有时还加后缀,以区别特性或进一步分类。常见后缀如下:
1、稳压二极体型号的后缀。其后缀的第一部分是一个字母,表示稳定电压值的容许误差范围,字母A、B、C、D、E分别表示容许误差为±1%、±2%、±5%、±10%、±15%其后缀第二部分是数字,表示标称稳定电压的整数数值后缀的第三部分是字母V,代表小数点,字母V之后的数字为稳压管标称稳定电压的小数值。
2、整流二极体后缀是数字,表示器件的最大反向峰值耐压值,单位是伏特。
3、晶闸管型号的后缀也是数字,通常标出最大反向峰值耐压值和最大反向关断电压中数值较小的那个电压值。
如:BDX51-表示NPN矽低频大功率三极体,AF239S-表示PNP锗高频小功率三极体。
积体电路把晶体二极体、三极体以及电阻电容都制作在同一块矽晶片上,称为积体电路。一块矽晶片上集成的元件数小于 100个的称为小规模积体电路,从 100个元件到1000 个元件的称为中规模积体电路,从1000 个元件到100000 个元件的称为大规模积体电路,100000 个元件以上的称为超大规模积体电路。积体电路是当前发展计算机所必需的基础电子器件。许多工业先进国家都十分重视积体电路工业的发展。积体电路的集成度以每年增加一倍的速度在增长。每个晶片上集成256千位的MOS随机存储器已研制成功,正在向1兆位 MOS随机存储器探索。
光电器件 光电探测器光电探测器的功能是把微弱的光信号转换成电信号,然后经过放大器将电信号放大,从而达到检测光信号的目的。光敏电阻是最早发展的一种光电探测器。它利用了半导体受光照后电阻变小的效应。此外,光电二极体、光电池都可以用作光电探测元件。十分微弱的光信号,可以用雪崩光电二极体来探测。它是把一个PN结偏置在接近雪崩的偏压下,微弱光信号所激发的少量载流子通过接近雪崩的强场区,由于碰撞电离而数量倍增,因而得到一个较大的电信号。除了光电探测器外,还有与它类似的用半导体制成的粒子探测器。
半导体发光二极体半导体发光二极体的结构是一个PN结,它正向通电流时,注入的少数载流子靠复合而发光。它可以发出绿光、黄光、红光和红外线等。所用的材料有 GaP、GaAs、GaAs1-xPx、Ga1-xAlxAs、In1-xGaxAs1-yPy等。
半导体雷射器如果使高效率的半导体发光管的发光区处在一个光学谐振腔内,则可以得到雷射输出。这种器件称为半导体雷射器或注入式雷射器。最早的半导体雷射器所用的PN结是同质结,以后采用双异质结结构。双异质结雷射器的优点在于它可以使注入的少数载流子被限制在很薄的一层有源区内复合发光,同时由双异质结结构组成的光导管又可以使产生的光子也被限制在这层有源区内。因此双异质结雷射器有较低的阈值电流密度,可以在室温下连续工作。
光电池当光线投射到一个PN结上时,由光激发的电子空穴对受到PN结附近的内在电场的作用而向相反方向分离,因此在PN结两端产生一个电动势,这就成为一个光电池。把日光转换成电能的日光电池很受人们重视。最先套用的日光电池都是用矽单晶制造的,成本太高,不能大量推广使用。国际上都在寻找成本低的日光电池,用的材料有多晶矽和无定形矽等。
其它利用半导体的其他特性做成的器件还有热敏电阻、霍耳器件、压敏元件、气敏电晶体和表面波器件等。
未来发展今年是摩尔法则(Moore'slaw)问世50周年,这一法则的诞生是半导体技术发展史上的一个里程碑。
这50年里,摩尔法则成为了信息技术发展的指路明灯。计算机从神秘不可近的庞然大物变成多数人都不可或缺的工具,信息技术由实验室进入无数个普通家庭,网际网路将全世界联系起来,多媒体视听设备丰富著每个人的生活。这一法则决定了信息技术的变化在加速,产品的变化也越来越快。人们已看到,技术与产品的创新大致按照它的节奏,超前者多数成为先锋,而落后者容易被淘汰。
这一切背后的动力都是半导体晶片。如果按照旧有方式将电晶体、电阻和电容分别安装在电路板上,那么不仅个人电脑和移动通信不会出现,连基因组研究、计算机辅助设计和制造等新科技更不可能问世。有关专家指出,摩尔法则已不仅仅是针对晶片技术的法则不久的将来,它有可能扩展到无线技术、光学技术、感测器技术等领域,成为人们在未知领域探索和创新的指导思想。
毫无疑问,摩尔法则对整个世界意义深远。不过,随着电晶体电路逐渐接近性能极限,这一法则将会走到尽头。摩尔法则何时失效?专家们对此众说纷纭。早在1995年在芝加哥举行信息技术国际研讨会上,美国科学家和工程师杰克·基尔比表示,5纳米处理器的出现或将终结摩尔法则。中国科学家和未来学家周海中在此次研讨会上预言,由于纳米技术的快速发展,30年后摩尔法则很可能就会失效。2012年,日裔美籍理论物理学家加来道雄在接受智囊网站采访时称,"在10年左右的时间内,我们将看到摩尔法则崩溃。"前不久,摩尔本人认为这一法则到2020年的时候就会黯然失色。一些专家指出,即使摩尔法则寿终正寝,信息技术前进的步伐也不会变慢。
图书信息书 名: 半导体器件
作 者:布伦南高建军刘新宇
出版社:机械工业出版社
出版时间: 2010年05月
ISBN: 9787111298366
定价: 36元
内容简介《半导体器件:计算和电信中的套用》从半导体基础开始,介绍了电信和计算产业中半导体器件的发展现状,在器件方面为电子工程提供了坚实的基础。内容涵盖未来计算硬体和射频功率放大器的实现方法,阐述了计算和电信的发展趋势和系统要求对半导体器件的选择、设计及工作特性的影响。
《半导体器件:计算和电信中的套用》首先讨论了半导体的基本特性接着介绍了基本的场效应器件MODFET和M0SFET,以及器件尺寸不断缩小所带来的短沟道效应和面临的挑战最后讨论了光波和无线电信系统中半导体器件的结构、特性及其工作条件。
作者简介Kevin F Brennan曾获得美国国家科学基金会的青年科学家奖。2002年被乔治亚理工大学ECE学院任命为杰出教授,同年还获得特别贡献奖,以表彰他对研究生教育所作出的贡献。2003年,他获得乔治亚理工大学教职会员最高荣誉--杰出教授奖。他还是IEEE电子器件学会杰出讲师。
图书目录译者序
前言
第1章 半导体基础
1.1 半导体的定义
1.2 平衡载流子浓度与本征材料
1.3 杂质半导体材料
思考题
第2章 载流子的运动
2.1 载流子的漂移运动与扩散运动
2.2 产生-复合
2.3 连续性方程及其解
思考题
第3章 结
3.1 处于平衡状态的pn结
3.2 不同偏压下的同质pn结
3.3 理想二极体行为的偏离
3.4 载流子的注入、拉出、电荷控制分析及电容
3.5 肖特基势垒
思考题
第4章 双极结型电晶体
4.1 BJT工作原理
4.2 BJT的二阶效应
4.2.1 基区漂移
4.2.2 基区宽度调制/Early效应
4.2.3 雪崩击穿
4.3 BJT的高频特性
思考题
第5章结型场效应电晶体和金属半导体场效应电晶体
5.1 JFE
对于中国半导体行业而言, 美国的芯片封锁并不是根本性的困难与阻碍,比芯片封锁更可怕的事实是, 美国半导体行业多数专家都是华人,相关领域的人才流失状况到底在多大程度上影响了中国半导体行业的发展这个有待商榷,但就算不是我国半导体行业落后的原因,也至少是这种落后现状的体现。
而对于如今要在半导体行业发力的中国而言,这是一个必须要予以深刻反思的问题。 中微半导体股份有限公司董事长兼总经理尹志尧在接受采访时直言:之前在英特尔工作的时候我就发现,全球芯片领域的专家,甚至很多行业的先驱者、领路人都是华人。
比如说很具有代表性的 杨培东, 出生于1971年,在国内完成小学到本科教育然后出国留美,之后一直在美国工作, 2016年当选美国科学院院士,在半导体制造领域拥有极高的权威。
这种例子我们已经屡见不鲜了,在国内接受教育之后留学就一直没回来,尽管很多人会批评他们数祖忘典,但很明显以民族主义对他们道德绑架更是一种无耻的行为, 说难听点当年国内也不是没人想搞半导体,结果呢?
联想殷鉴不远,倪光南院士如今安在,说白了过去国内根本就没有发展半导体的环境, 甚至于一些有志之士想要推动相关领域的国产化还被买办给打压的头都抬不起来。
所以半导体领域我们的人才流失状况,与一些其他领域的状况是有所不同的,不是说国外拥有更好的学术环境和发展条件,而是说国内根本就没有发展的条件,甚至有关方面就从来没有对这种事情予以重视, 以至于这类人才他们即使留在国内也只能被埋没,那么最后到底能做出何种选择? 这是很明显的事情。
最近几年对中国半导体行业发展水平的重视程度被提上了一个全新的层次,几乎可以说是将其看做国家最终产业之一, 对这个行业的重视性被提升到了几乎与航空航天、核技术等等重要技术持平的地位,但过去并不见得是这样。
国内的半导体行业过去一直是按照满足不可替代性需求的水平布局的,比如说我们的卫星、航天器,空军的战斗机,坦克的火控计算机上面的芯片, 那个倒是国产的,而且这方面也不需要很先进的技术。
因为真正在非民用领域对于半导体制程的要求其实还没有民用领域那么高, 不仅仅是我们这样,包括在美西方也同样如此。 F-22上面使用的PowerPC-603E是1995年发布的处理器,这款芯片的制程还没达到纳米级别,是微米级别,换算过去的话也就是500纳米级别的制程;
多年以后在航电架构领域按照美军的说法拥有划时代意义的F-35战斗机,其搭载的芯片制程也就是45纳米, 而这种水平的制程其实是完全处于中国半导体行业现有发展水平的能力之内的,说白了就是我们能造。
说实话,一定要按照军用、商用的标准,我国的半导体行业水平其实完全够用根本没必要炒作什么“芯片封锁”,当然到民用领域这又是另外一个情况了,而且芯片产业还有一个很有趣的地方在于, 高性能的硬件解决方案往往也是脱胎于民营市场的。
毕竟军用的那点需求量也不可能单独研发,但往往军用半导体产品又不需要什么高性能,其实处于一个性能过剩的状态,真要说配套产业链? 中国是有的,不过也就是满足航空航天的需求罢了。
所以如果一定要为现在中国的半导体制造领域的现状找一个最主要的原因,那说白了就是过去我们不重视导致的, 把时间放在20年前,没人会想到今天中国有必要在这个高精尖领域与美国竞争, 而且就算那个时候想到了,其实也不见得一定就拿得出钱来。
比如说我们现在经常说中国航天给的经费少,但真要说起来,放在2000年初那个时期,航天口的经费不仅不少,而且是铁打的经费。
为什么会这样?因为航天重要啊,航天领域绝大部分技术是可以原封不动地投入到军事领域的,载人航天打上去的火箭用到的技术可以拿来造d道导d, 所以2000年初那会连发展出后来歼-10战斗机的“十号计划”都缺少经费的时候, 航天口的经费不仅不少而且按质按量满足。
至于说半导体?说真的那个时候半导体制造对于中国而言真的不是一个很重要的事情 。但现在的情况不一样,因为中国的民营企业真正地受到了美国的“芯片封锁”,自从美国政府把华为加入实体清单之后,后者的手机业务现在真的可以说是行将就木了,产品越做越好的同时销量却不升反降。
不是因为市场不认可,而是因为真的拿不出货来,华为去年推出的几款旗舰手机,过去了一年时间现在价格反倒在上涨,首发4999的Mate40过去一年了,现在价格来到差不多5999的水平了, 也因为美国的“芯片封锁”,华为的手机业务现在更新换代都变得更慢了。
美国政府的这种封锁行为给中国的国家安全构成威胁了吗? 这个问题说起来就比较复杂了。一定要说的话,美国的芯片封锁当然不能给中国造成直接的安全威胁,说白了华为终究只是一个民企,尽管是一个很重要很重要的民企,比其他所有民企都更加重要的民企,但也只是一个民企。
但往大了说, 这中间体现的其实是一个非常头疼的问题,就是中国企业要如何走向海外?根本走不出去! 我们现在看到了,华为这样一家有技术有实力正当经营的企业,就因为它没在美国上市,不受美西方资本的控制,结果被以几乎是最没有下限的方式打压;说难听点,现在孟晚舟还在加拿大!
然后华为自身也在美国的制裁下受到了很严重的影响,作为5G领域的先驱之一,华为的新手机竟然是4G的,这还怎么出海啊? 这就指向了一个说法,很多人认为中国如果有很多个华为,就不怕美国的制裁;
这种逻辑也不难理解,无非就是觉得我们自己什么都能造得出来的时候就不怕美国人的禁运封锁了;但话又说回来,美国的手段,就真的只是现在台面上对付华为用的这些手段吗? 在最极端的情况下他们还能做什么?他们能做比现在疯狂的多的事情!
1993年的银河号事件,当时美国宣称中国的“银河”号货船载有用于制造化学武器的违禁品,在公海上将其逼停然后上船搜查; 这件事情过去也快三十年了,但又有谁能保证,这种事情不会再次发生?
如果说中国真的有很多个华为,那就糟透了,因为他们还有很多手段没有用,尽管这些手段很无耻很下流,甚至动用这种手段本身也是对美国国家形象的损害,是对现有国际秩序的损害, 但到底要不要动用这种手段,终究只是一个利弊的问题。
到了有必要的时候就可以动用,如果说我们现在能制造自己的5nm乃至于3nm制程的芯片,我相信,美国海军一定会在公海上尝试逼停中国货船的。特别是半导体领域如今本身也已经成为了美国对中国拥有技术优势的最主要的一个领域, 失去这种优势的时候对应失去的安全感,他们到底能否接受?
当然这个就扯得很远,涉及到国家安全和军力对比之上的,但具体到产业发展、民营经济这些领域,我们应当注意到, “芯片封锁不足以对中国的国家安全构成威胁”这个结论他是在一个短期、边界明显清晰的前提之下得出的。
长远地看, 以华为、“芯片封锁”为代表的美西方对于中国民营企业的制裁、限制, 这本身对中国企业在海外的发展构成了严重的阻碍,对中国的经济发展构成了严重的阻碍,那么也可以将其看作是对中国的国家安全构成了威胁。
那么现在展望中国半导体行业的发展前景,可以说是风险与机遇并存,一方面传统上讲,中国在一个行业要有重大发展, 最主要的是需要国企下场,因为中国的民企无论是组织还是发展水平本身还是比较落后的。
但国企是否能够胜任半导体行业的一个需求,现在来看只能说是未来可期,因为这本身是一个高度市场化的领域, 国企可能不是很好适应,而至于说寄希望于民企能够担负起这个重任, 只能说是可以期待一下。
毕竟过去我们也见识过了不少关于芯片的骗局,往前说有“上海汉芯”,往后说有“武汉弘芯”,这些事情都证明了一点,就是目前中国的 社会 环境, 其实很难说可以孕育出真正能在某个高精尖领域精耕细作的企业。
说白了资本本身是逐利的,与其说叫他们去长线投资未来与国外高度成熟发达的同行竞争, 说实话他们更愿意在国内和菜贩子抢饭吃,那可是一本万利的生意啊!
说白了,中国毕竟是一个 社会 主义国家,虽然现在我们也在很多领域高度资本化、市场化,但 社会 主义的底色仍然存在,资本、金融集团完全没有僭越国家主权的趋势,所以他们本身也不可能站在一个很高的高度去考虑一些问题, 现在他们更宁愿在大政府的羽翼之下搞“垄断”,而不是说在某个方面长线投资。
而且就 社会 氛围来说,过去二三十年的改革开放虽然中国取得了长足的发展,取得许多世人瞩目的成就,但终究掩盖不了一点,就是这样一段高速发展的时期其实是完全改变了中国的 社会 氛围, 那种投机倒把一夜暴富的故事几乎成为了另一个版本的“美国梦”;
一切向钱看其实一定要说的话,也不见得有什么问题,毕竟美国就是那样,但问题就出在中国毕竟不是资本主义国家,资本的权利被严格的限制了,这种背景下, 一切向钱看的思潮本身就成为了最大的腐败,成为了国家发展最大的阻力。
以至于根植于现在中国整个 社会 ,在这种背景下有耐心脚踏实地好好干事的人,到底有多少是个问题,能否留在国内而不是跑去美国也是一个问题; 毕竟现在某飞硕士试用期不也就6000一个月吗,这还谈什么留住人才呢?
其实也正是因为这样一个大环境,才让华为这样一个有实力有技术有财力的大型民企显得尤为珍贵, 因为放眼整个中国我真的找不出第二个像华为一样优秀的企业;这既是对华为的褒奖,也是对中国经济现状的一种讽刺。
作为改开的重要既得利益者的许多所谓的互联网企业, 他们所有的精力都花在了垄断、与菜贩子抢饭吃上面,甚至还沾沾自喜地将这种低劣的行为称为“眼光”,而他们的这种口吻在前几年甚至都鲜见批评的声音,也就是最近两年经济发展放缓左翼思潮崛起人们才意识到到底发生了什么。
我想说, 中国半导体的发展,绝不仅仅是一个投入与产出的问题,各种国内的芯片骗局都说明了这一点, 不是说政府扶持就一定能搞起来的!
因为半导体行业具有的特殊性,我们需要一个效率远高于以往各类国企、民企的组织,而将涉及到我们现有的 社会 状态能否支撑起一种新型的 社会 关系的问题,对于这个问题的解决, 一定程度上讲关乎2020年代中国 社会 的新发展。
最终我们在这一领域能否按照我们所希望的那样发展,将取决于我们对这个十年的种种机遇的认识与把握。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)