MCU可10年不换电池?日本最大的半导体厂商瑞萨是如何做到的?

MCU可10年不换电池?日本最大的半导体厂商瑞萨是如何做到的?,第1张

在6月12日在日本京都召开的2019年度"VLSI和电路技术专题研讨会上,瑞萨展示了业界首款基于65nm SOTB技术的嵌入式2T-MONOS(双晶体管-金属氧化氮氧化硅)闪存的相关测试结果。基于SOTB的新技术已在瑞萨R7F0E嵌入式控制器中所采用,该控制器专门用于能量采集应用。

2003年由日立和三菱电机合并成立了瑞萨电子。

2010年4月1日,NEC电子和瑞萨电子合并,成为了全球第一的MCU供应商,也是SoC系统晶片与各式类比及电源装置等先进半导体解决方案的领导品牌之一。在成立之时一跃成为全球第三大半导体公司,仅次于英特尔和三星。

然而瑞萨电子合并后的几年路走的并不顺,从成立时的全球半导体老三的位置一路挣扎,在2014年跌出了全球前十。

2016年,瑞萨开始下注 汽车 行业,并以32亿美元收购Intersil,引入了模拟与混合信号芯片产品线,盈利才逐渐上来。2017年,瑞萨占据了全球20%的MCU市占率。

去年9月11日,瑞萨宣布以约67亿美元收购美国模拟芯片大厂IDT,这个收购被认为是为了应对 汽车 领域的老对手NXP的威胁。在智能手机市场增长下滑的今天,预计 汽车 市场将是未来半导体厂商最大的细分市场。然而在2018年,意法半导体(STMicroelectronics)、英飞凌(Infineon)和NXP的 汽车 业务收入均出现增长,而瑞萨(Renesas)的 汽车 业务收入却较2017年有所下降。

与最接近的竞争对手相比,瑞萨是唯一一家在2018年 汽车 业务营收出现下滑的供应商,这不仅让人感觉到一丝意外

瑞萨电子中国董事长真冈朋光认为,瑞萨在2018年已经预计到了市场需求疲软的现状,同时也根据需求下滑进行了相对应的措施,如调整工厂产能。此外这不仅仅是瑞萨电子一家企业的事情,还需要跟代理商和销售渠道不断的加强沟通。"我们的客户对市场的未来也比较谨慎。因为不由厂商控制的情况太多了,比如现在的中美贸易摩擦的问题,没有人能预计到,但就是发生了。"真冈朋光认为,中美贸易摩擦这种不可控的事情发生,对瑞萨的客户影响是很明显的,因此瑞萨需要不断调整自己去适应市场的变化。

目前对于瑞萨来说,最重要的事情是尽快适应与IDT的并购,以及实现"1+1大于2"的效果。

据IDT的财报,近些年其毛利率在60%以上,2014—2018年复合增长率更是高达14.8%,而且其技术和产品恰好符合瑞萨电子下注的 汽车 业务,其数据中心与通信基础设施也会为瑞萨开辟更大的市场。2019年瑞萨与IDT的收购案终于达成,瑞萨也一跃成为日本最大的半导体公司。

目前瑞萨全球销售额7600亿日元,全球19000员工。从财报来看,瑞萨电子收入7570亿日元。

"面向 汽车 电子的半导体产品是瑞萨的代表业务。从应用领域来看, 汽车 领域销售额约占总销售额的一半,很难找到一辆完全不使用瑞萨电子产品的 汽车 。"——这是瑞萨电子中国董事长真冈朋光在今年举行的CITE中国信息博览会上的发言。

汽车 市场当然是瑞萨最重要的市场之一。根据srategy Analytics2018提供的数据,瑞萨电子在2017年的 汽车 MCU/SOC市场份额众,包括动力总成、xEV、车身、底盘与安全、信息 娱乐 &仪表相关的车用芯片均排名第一。

此外,2017年瑞萨发布了一个ADAS及自动驾驶平台Renesas Autonomy,同时发布的还有R-CarV3M SoC,该芯片配有2颗ARM CortexA53、双CortexR7锁步内核和1个集成ISP,可满足符合ASIL-C级别功能安全的硬件要求,能够在智能摄像头、全景环视系统和雷达等多项ADAS应用中进行扩展。除了R-Car系列产品外,瑞萨也有针对雷达传感器的专业处理器芯片如RH850/V1R-M系列。

应该说R-Car系列是瑞萨进军自动驾驶的切入点。此前推出的第三代产品R-CarH3/M3已经具有L2等级的自动驾驶需求。只不过作为一家日系公司,瑞萨在自动驾驶领域的布局显得异常低调。

作为日本最大的半导体厂商,瑞萨的目标绝不仅仅是 汽车 市场,物联网市场也是瑞萨的布局重点。

5月28日,瑞萨电子2019产品及系统方案研讨会——厦门站正式召开。在此次活动上,瑞萨不仅展示了自己的多款嵌入式解决方案,还首次展示了IDT的多款物联网解决方案,以及融合了瑞萨与IDT双方技术的系统级解决方案。

瑞萨切入物联网领域,在今年重点推广的主要有两大技术:DRP技术和低功耗的SOTB技术。

提到瑞萨在物联网领域的布局,不得不提到瑞萨在今年重点推广的DRP技术和低功耗的SOTB技术。

DRP技术,简单来说就是本地的嵌入式AI解决方案,可以取代以往的云端AI计算能力。

在商汤、旷视等各大AI芯片厂商以及Nvidia、Intel、高通等传统半导体厂商纷纷布局嵌入式AI的今天,瑞萨的DRP有什么亮点呢?

据了解,瑞萨独有的DRP技术,是一种动态可编程的处理器,可以按照不同的时间把动态逻辑编程,这特别适合应用在图像处理等应用上。DRP中有AI -MAC,有大量的计算单元,可以来实现卷积运算。

此外,相比目前市场上的通用的嵌入式AI芯片,如MCU、DSP、FPGA,瑞萨DRP可以做到10~100倍的强大处理能力,而功耗则降低很多。据了解,这个DRP的主频只有60Mhz,而处理能力则比A9 MCU要快13倍。

SOTB技术,则是一种极低功耗技术,可以让MCU的电流消耗降低到传统电流的十分之一。简单来说,这种技术让不需要电池的模式成为可能。

由于采用了无掺杂的晶体管,对比传统的平面式晶体管的淤积特性变化,可以在超低电压下进行稳定的 *** 作,比如0.5伏左右。如果传统的MCU采用3V的纽扣电池供电,可能一个月后就没电了。

如果采用STB技术到MCU,由于本身需要的电流非常低,可能3μA就够了,这个功耗几乎可以忽略不计,可以实现无间断的工作。再配合低功耗的DRP嵌入式AI方案,整个系统就可以做到低时延、安全、低功耗。瑞萨电子也强调,其超低功耗的产品可保证设备10年左右不换电池,这是其技术优势所在。

陈建明部表示,SOTB技术的推广将分三步走,第一步主要是替换需要更换电池的各类MCU应用;第二步预计到2021年在蓝牙BLE中增加带SOTB功能的MCU。比如智能家电、智能楼宇等。第三步则将SOTB和E-AI技术共同加入进来,做成完整的解决方案,在农业、智能交通等领域都可以用到。

在6月12日在日本京都召开的2019年度"VLSI和电路技术专题研讨会上,瑞萨展示了业界首款基于65nm SOTB技术的嵌入式2T-MONOS(双晶体管-金属氧化氮氧化硅)闪存的相关测试结果。基于SOTB的新技术已在瑞萨R7F0E嵌入式控制器中所采用,该控制器专门用于能量采集应用。与非SOTB 2T-MONOS闪存(约需50μA/MHz读取电流)相比,新技术实现的读取电流仅6μA/MHz左右,等效于0.22 pJ/bit的读取能耗,达到MCU嵌入式闪存最低能耗级别。这项新技术还有助于在R7F0E上实现20μA/MHz的低有效读取电流,达到业界最佳。

值得一提的是,能量收集技术的迅猛发展,使智能穿戴设备的自我供能有望成为现实。比如手环、耳机等可穿戴设备目前受限最大的就是功耗问题,而瑞萨下一步将在蓝牙BLE中增加带SOTB功能的MCU,很明显穿戴产品将大大受益。

我们有理由展望不久的未来,采用瑞萨的SOTB技术的能量采集系统将在智能手表等穿戴类设备中大显神威。

东京电子网站介绍 东京电子有限公司(Tokyo Electron,TEL)是一家日本电子和半导体公司,总部位于东京港区赤坂5-3-1。公司服务区域涉及日本,,北美,韩国,欧洲,东南亚和中国。

东京电子是一家制造集成电路,平板显示器和光伏电池供应商。东京电子器件株式会社是东京电子有限公司旗下子公司,公司专门制造半导体器件,电子元件和网络设备。

截至2011年,东京电子是日本IC和PFD设备最大制造商,也是世界第三大IC和PFD设备制造商。公司于1963年作为东京电子实验室有限公司成立。

2013年9月24日,东京电子和应用材料公司宣布合并。合并后的公司被称为Eteris,它将是世界上最大的半导体加工设备供应商,总市值大约290亿美元。

东京电子实验室股份有限公司于1963年11月11日由Tokuo Kubo和Toshio Kodaka创建,起初500万日元资金来自于东京广播公司。

东京电子在东京证券交易所的股票代码为8035,是TOPIX 100组件和日经225指数成分股,首席执行官/总裁/董事长为东哲郎,截至2014年4月1日共有11355名员工。

2011年,东京电子营业收入为978亿日元,净收入为719亿日元,总资产为8092亿日元,总股本为5727亿日元

东京电子股东包括:

主信托日本银行(10.68%)

日本信托服务银行(7.71%)

东京广播控股公司(4.3%)

梅隆银行Treaty Clients Omnibus(2.92%)

美国道富银行及信托公司(2.44%)

东京电子是亚洲日本行业领先的网站,东京电子于2020年9月被世界网址收录于目录下,网站创办者是:东京电子,东京电子网站网址是:,世界网址综合分析东京电子网站的价值和可信度、百度搜索排名、Alexa世界排名、百度权重等基础信息,为您能准确评估东京电子网站价值做参考!

姓 名:李欢迎            学 号:20181214053              学 院:广研院

原文链接:https://xueqiu.com/7332265621/133496263

【 嵌牛导读 】 : 半导体的应用领域很广,在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,可以说是现代科技的骨架。半导体应用的关键领域便是集成电路。集成电路发明起源于美国,后来在日本加速发展壮大,到目前在韩国台湾分化发展。本文旨在介绍日本半导体的发家史,体会上世纪美日之间在半导体产业争霸上的血雨腥风,同时从中寻找一些我国科技产业的发展经验。

【 嵌牛鼻子 】 : 日本半导体产业

【 嵌牛提问 】 : 日本半导体产业是如何在美国技术封锁的牢笼中走向世界?

【 嵌牛内容 】

       在集成电路行业,全球范围内的每一次技术升级都伴随模式创新,谁认清了技术、投资和模式间的关系,谁才能掌握新一轮发展主导权,在全球竞争中占据更为有利的地位,超大规模集成电路(VLSI)计划便是例证。日本的集成电路产业发展较早,在20世纪60年代便已经有了研究基础,发展至今经历了从小到大、从弱到强、转型演变的历史,其中从1976年3月开始实施的超大规模集成电路计划是一个里程碑。

日本集成电路的起点

       在超大规模集成电路计划实施前,日本的集成电路行业已经有了一定的基础。作为冷战时期美国抵御苏联影响的桥头堡,日本的集成电路发展得到了美国的支持。1963年,日本电气公司便获得了仙童半导体公司的平面技术授权,而日本政府则要求日本电气将其技术与日本其他厂商分享。以此为起点,日本电气、三菱、夏普、京都电气都进入了集成电路行业。在日本早期的集成电路发展中,与美国同期以军用市场为主不同的是,日本在引进技术后侧重于民用市场。究其原因,第二次世界大战后,日本的军事建设受限,在美苏航天争霸的过程中日本的半导体技术只能用于民间市场。正是如此,日本走出了一条以民用市场需求为导向的集成电路发展之路,并在20世纪70年代和80年代一度赶超美国。

        日本政府为集成电路的发展制定了一系列的政策措施,例如1957年制定的《电子工业振兴临时措施法》、1971年制定的《特定电子工业及特定机械工业振兴临时措施法》和1978年制定的《特定机械情报产业振兴临时措施法》,加上民用市场的保护使日本的集成电路具备了一定的基础。

20世纪70年代,在美国施压下,日本被迫开放其半导体和集成电路市场,而同期IBM正在研发高性能、微型化的计算机系统。在这样的背景下,1974年6月日本电子工业振兴协会向日本通产省提出了由政府、产业及研究机构共同开发“超大规模集成电路”的设想。此后,日本政府下定了自主研发芯片、缩小与美国差距的决心,并于1976—1979年组织了联合攻关计划,即超大规模集成电路计划,计划设国立研发机构——超大规模集成电路技术研究所。此计划由日本通产省牵头,以日立、三菱、富士通、东芝、日本电气五家公司为主体,以日本通产省的电气技术实验室、日本工业技术研究院电子综合研究所和计算机综合研究所为支持,其目标是集中优势人才,促进企业间相互交流和协作攻关,推动半导体和集成电路技术水平的提升,以赶超美国的集成电路技术水平。

        项目实施的4年间共取得上千件专利,大幅提升了日本的集成电路技术水平,为日本企业在20世纪80年代的集成电路竞争铺平了道路,取得了预期的效果。把握世界竞争大势、研判未来发展方向,需要凝聚力量、统筹协调的专业认知作为支撑。尽管事后看,日本的超大规模集成电路计划实施效果非常理想,但是实施过程却并不顺利。根据前期测算,计划需投入3000亿日元,业界希望能够得到1500亿日元的政府资助,后来实施4年间共投入737亿日元,其中政府投入291亿日元。其间,自民党信息产业议员联盟会长桥木登美三郎多次努力,希望政府追加投入,但是未能如愿。政府投入未及预期,参与企业的士气受到了一定程度的打击。当时,参与计划的富士通公司福安一美说:“当时,大家都有一种被公司遗弃的感觉,而且并未料到竟然研制出向IBM挑战的产品。”

       投入不及预期,再加上研究人员从各企业和机构间临时抽调、各行其道,一时间日本的超大规模集成电路计划开发很不顺利,不同研究室人员间互相提防、互不往来、互不沟通的现象十分普遍。 此时,垂井康夫站了出来。垂井康夫1929年出生于东京,1951年毕业于早稻田大学第一理工学院电气工学专业,1958年申请了晶体管相关的专利,是日本半导体研究的开山鼻祖,1976年超大规模集成电路技术研究会成立时被任命为联合研究所的所长。

       垂井康夫在当时的日本业界颇具声望,他的领导使各成员都能信服。 垂井康夫对参与方进行积极的引导,指出参与方只有同心协力才能改变基础技术落后的局面,在基础技术开发完成后各企业再各自进行产品开发,这样才能改变在国际竞争氛围中孤军作战的困局。垂井康夫的努力,很快为研发人员所接受,各家力量得到了有效的融合,而历时4年的风雨同舟、协同努力成了日本集成电路产业发展的最好推力。除垂井康夫外,当时已从日本通产省退休的根岸正人功不可没。当时,超大规模集成电路技术研究会设理事会,日立公司社长吉ft博吉担任理事长,但是在真正的执行过程中,根岸正人发挥了很好的协调作用。

       根岸正人有多年推动大型国家研究计划的经验,他对计划各参与方的能力、利益诉求都颇为了解,在计划中通过其有效的沟通化解了冲 突,为垂井康夫成功地凝聚团队做了背后的铺垫。 可以看出,在集成电路的研发攻关中,除了资金和资源投入外,团队协调和技术融合更是成功的关键。

       从超大规模集成电路计划的组织架构来看,除垂井康夫领导的联合研究所外,先前成立的两个联合研究机构也参与了超大规模集成电路计划,分别是日立、三菱、富士通联合建立的计算机综合研究所,以及由日本电气和东芝联合成立的日电东芝信息系统。三个研究所分别从事超大规模集成电路、计算机和信息系统的研发,其中联合研究所负责基础及通用技术的研发,另两个研究所则负责实用化技术开发(重点为64KB及256KB内存芯片的设计及开发)。在各方的协同努力下,参与方都派遣了其最优秀的工程师。来自各地的工程师们肩并肩地在同一研究所内共同工作、共同生活、集中研 究,在微细加工技术及相关设备、硅晶圆的结晶技术、集成电路设计技术、工艺技术和测试技术上取得了突破。其中,联合研究所主要负责微细加工技术及相关设备、硅晶圆的结晶技术的攻关,其他技术的通用部分也由其负责,实用化的开发则由另两个研究所负责。

       具体来看,六个研究室中,分别由不同企业负责协调:第一、第二、第三研究室主要攻关微细加工技术,分别由日立、富士通和东芝负责协调;第四研究室攻关结晶技术,由工业技术研究院电子综合研究所负责协调;第五研究室负责工艺技术,由三菱负责协调;第六研究室攻关测试、评价及产品技 术,由日本电气负责协调。微细加工技术是计划的重心,从联合研究所的研究成果来看,日本当时开发了三种电子束描绘装置、电子束描绘软件、高解析度掩膜及检查装置、硅晶圆含氧量及碳量的分析技术等。垂井康夫评估说,计划实施完毕后日本的半导体技术已和IBM并驾齐驱。在计划中,日本企业对于动态随机存储器有了深入的理解,其更高质量、更高性能的动态随机存储器芯片为日本赶超美国提供了机遇。

       从1980年至1986年,日本企业的半导体市场份额由26%上升至45%,而美国企业的半导体市场份额则从61%下滑至43%。 1980年,联合研究所的研究工作已全部结束,而另两个研究所则追加资金(共约1300亿日元)作进一步的技术开发, 以1980年至1982年为第一期,1983至1986年为第二期。 这些系统化的布局为日本的半导体行业腾飞发挥了至关重要的作用。

       从人员来看,计划开展期间的联合研究所研发人员数量为100人左右,计算机综合研究所的研发人员数量为400人左右,日电东芝信息系统则为370人左右。在后续投入阶段,研究人员数量减少,1985年计算机综合研究所研发人员已减至90人左右,而日电东芝信息系统则减至30人左右。尽管联合研究所研发人员相对较少,但事关各企业的未来发展基础,因此各企业都派遣一流人才参与。在此过程中,垂井康夫对各企业都十分了解,点名要求各企业派遣其看中的人才。

       在实施超大规模集成电路计划及后续的资助计划后,1986年日本半导体产品已占世界市场的45%,超越美国成为全球第一半导体生产大 国。 1989年,在存储芯片领域,日本企业的市场份额已达53%,与美国该领域37%的市场份额形成了鲜明对比。 在日本企业的巅峰时期,日本电气、东芝和日立三家企业排名动态存储器领域的全球前三,其市场份额甚至超90%,与之相比,美国德州仪器和镁光科技则苦苦支撑。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7099402.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-01
下一篇 2023-04-01

发表评论

登录后才能评论

评论列表(0条)

保存