前道主要是光刻、刻蚀机、清洗机、离子注入、化学机械平坦等。后道主要有打线、Bonder、FCB、BGA植球、检查、测试等。又分为湿制程和干制程。
湿制程主要是由液体参与的流程,如清洗、电镀等。干制程则与之相反,是没有液体的流程。其实半导体制程大部分是干制程。由于对Low-K材料的要求不断提高,仅仅进行单工程开发评估是不够的。为了达到总体最优化,还需要进行综合评估,以解决多步骤的问题。
扩展资料:
这部分工艺流程是为了在 Si 衬底上实现N型和P型场效应晶体管,与之相对应的是后道(back end of line,BEOL)工艺,后道实际上就是建立若干层的导电金属线,不同层金属线之间由柱状金属相连。
新的集成技术在晶圆衬底上也添加了很多新型功能材料,例如:后道(BEOL)的低介电常数(εr <2.4)绝缘材料,它是多孔的能有效降低后道金属线之间的电容。
参考资料来源:百度百科-后道工序
参考资料来源:百度百科-半导体
参考资料来源:百度百科-前道工艺
7nm不是工艺极限,而是物理极限。要做个小于7nm的器件并不难,大不了用ebeam lith。但是Si晶体管小于7nm,隔不了几层原子,遂穿导致漏电问题就无法忽略,做出来也没法用。
芯片上集成了太多太多的晶体管,晶体管的栅极控制着电流能不能从源极流向漏极,晶体管的源极和漏极之间基于硅元素连接。随着晶体管的尺寸逐步缩小,源极和漏极之间的沟道也会随之缩短,当沟道缩短到一定程度时,量子隧穿效应就会变得更加容易。
晶体管便失去了开关的作用,逻辑电路也就不复存在了。2016年的时候,有媒体在网络上发布一篇文章称,“厂商在采用现有硅材料芯片的情况下,晶体管的栅长一旦低于7nm、晶体管中的电子就很容易产生量子隧穿效应,这会给芯片制造商带来巨大的挑战”。所以,7nm工艺很可能,而非一定是硅芯片工艺的物理极限。
现在半导体工业上肯定是优先修改结构,但是理论上60mV/decade这个极限是目前半导体无法越过的。真正的下一代半导体肯定和现在的半导体有着完全不同的工作原理,无论是TFET还是MIFET或者是别的什么原理,肯定会取代目前的半导体原理。
扩展资料
难点以及所存在的问题
半导体制冷技术的难点半导体制冷的过程中会涉及到很多的参数,任何一个参数对冷却效果都会产生影响。实验室研究中,由于难以满足规定的噪声,就需要对实验室环境进行研究。半导体制冷技术是基于粒子效应的制冷技术,具有可逆性。所以,在制冷技术的应用过程中,冷热端就会产生很大的温差,对制冷效果必然会产生。
其一,半导体材料的优质系数不能够根据需要得到进一 步的提升,这就必然会对半导体制冷技术的应用造成影响。
其二,对冷端散热系统和热端散热系统进行优化设计,依然处于理论阶段,没有在应用中更好地发挥作用,这就导致半导体制冷技术不能够根据应用需要予以提升。
其三,半导体制冷技术对于其他领域以及相关领域的应用存在局限性,所以,半导体制冷技术使用很少,对于半导体制冷技术的研究没有从应用的角度出发,就难以在技术上扩展。
其四,市场经济环境中,科学技术的发展,半导体制冷技术要获得发展,需要考虑多方面的问题。重视半导体制冷技术的应用,还要考虑各种影响因素,使得该技术更好地发挥作用。
半导体的范围广泛,应用从科研到民生,日新月异:1.制造工艺需根据半导体设计的层层不同而不同,2.为避免复杂繁琐导致质量问题,制造工艺流程基本上分三个工程段落,
2.1.模组及应用设计工程,模拟数据
2.2.前工程
2.3.后工程封测
每个阶段都有上百到三百种以上的工艺,至少需要学习10-30年
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)