MCP nForce GeForce这三种芯片组有什么区别?

MCP nForce GeForce这三种芯片组有什么区别?,第1张

MCP所带来的效益主要是减少芯片所占据的空间,除此之外,芯片间的电路距离变短,可以提供较佳的电性效能。内容随著晶体管体积愈来愈小,因此单位面积上将存在更多晶体管,摩尔定律说明每18个月在晶粒可以增加1倍的晶体管数量,是指晶体管2度空间的平面微缩,即是在X与Y方向的微缩。

nForce

MCP将晶粒往上堆叠,将手机存储器象是盖大楼一样一层一层往上堆叠,让晶粒从原本的2度空间排列朝向3度空间的发展,这是半导体产业发展的重要趋势。

进入Intel平台芯片组市场比较晚,起初主要是定位于中高端市场的nForce4 SLI IE、nForce4 SLI X16 IE、nForce4 SLI XE以及nForce4 Ultra IE。这些北桥芯片都支持1066MHz FSB、双通道DDR2 667内存以及PCI Express x16显卡插槽,并且除了nForce4 Ultra IE之外都支持NVIDIA的SLI多显卡并行技术。然后是nForce 590 SLI IE、nForce 570 SLI IE和nForce 570 Ultra IE,支持Socket 775接口全系列的所有处理器,包括最新的Conroe核心Core 2 Duo和Core 2 Extreme,支持1066MHz FSB和双通道DDR2 667内存。其中,nForce 590 SLI IE和nForce 570 SLI IE还支持NVIDIA的SLI技术,nForce 590 SLI IE更是能支持两条真正全速的PCI Express x16插槽,支持顶级的Quad SLI技术,能最大限度的发挥SLI技术的威力

AMD的:

除了早期的支持K7系列CPU的nForce2 IGP/SPP,nForce2 Ultra 400,nForce2 400等,比较新的是支持K8系列CPU的nForce3系列的nForce3 250、nForce3 250Gb、nForce3 Ultra、nForce3 Pro以及nForce4系列的nForce4、nForce4 Ultra和nForce4 SLI,这些全都是单芯片芯片组,其中nForce3系列支持AGP 8X规范,而nForce4系列则支持PCI Express X16规范,nForce4 SLI更能支持两块nVidia的Geforce 6系列显卡(支持SLI技术的GeForce 6800Ultra 、GeForce 6800GT、GeForce 6600GT)之间的SLI连接,极大地提升系统的图形性能。

还有有nForce4 SLI X16、GeForce 6100和GeForce 6150,都支持1000MHz的HyperTransport频率和PCI Express x16显卡插槽。其中,nForce4 SLI X16支持两条真正全速的PCI Express x16插槽,能最大限度的发挥SLI技术的威力;GeForce 6100和GeForce 6150则集成了支持DirectX 9.0c的基于NV44的显示核心。

最新的是nForce 590 SLI、nForce 570 SLI、nForce 570 Ultra和nForce 550四种Socket AM2平台芯片组,支持全系列的Socket AM2处理器,除了nForce 590 SLI仍然采用传统的南北桥架构之外其它全部都是单芯片芯片组。所有的nForce 5系列全部都支持1000MHz的HyperTransport频率和PCI Express x16显卡插槽。其中,nForce 590 SLI和nForce 570 SLI还支持NVIDIA的SLI技术,nForce 590 SLI更是能支持两条真正全速的PCI Express x16插槽,支持顶级的Quad SLI技术,能最大限度的发挥SLI技术的威力

GeForce

Geforce是一个英文产品的商标。 (Geometry-Force=Geforce)几何很强

GeForce是nVIDIA公司出品的显示芯片的一种系列

目前已有GeForce256、GeForce2、GeForce3、GeForce4、GeForce FX、GeForce 6系列,GeForce 7系列,G第一代产品:GeForce 256

DX7.0 OpenGL PCI/AGP4X(DDR版本只有AGP接口)

第一款256bit显示核心的可编程GPU,支持T&L立方环境映射、Dot3凹凸映射和HDTV动态补偿和硬件alpha混合。在显示接口方面,GeForce 256率先开始支持AGP4×快写模式。

第二代产品:GeForce 2

DX7.0 OpenGL AGP4X

GeFoece 2有明显高低端之分,MX系列为低端,其余系列为中高端。

加入数字振动控制(DVC),TwinView(双头显示)功能。在当时,FSAA技术已经开始兴起,FSAA可以大量的改善画质,去除难看的锯齿,甚至是旧游戏也可以让它变得更光滑好看,此前只有3dfx的双VSA-100芯片Voodoo5支持。GeForce2 GTS也可以用硬件FSAA,它的方式是用SuperSampling,但是SuperSampling FSAA只能使用在低分辨率,很显然的,nVIDIA的SuperSampling方式比3dfx的MultiSampling的效率还要差,另外nVIDIA驱动程序没有DirectX的FSAA功能,这使得拥有FSAA技术的GeForce2 GTS并没有得到很好的改善画质的效果。

支持S3TC、FSAA、Pixels Shaders和硬件动态MPEG-2动态补偿功能。

第三代产品:GeForce 3

DX8.0 OpenGL AGP4X

光速存储结构(Lightspeed Memory Architecture),在高分辨率下,即使当时最快的DRAM模组也无法满足新一代的图形芯片这个事实已经不再是什么秘密。就因为这个原因ATI开发了HyperZ技术,它可以解决许多在存取数据和消除Z缓冲中浪费掉的带宽。它属于一种无损的压缩算法(即减小了数据量,但不降低画面精度)。nVIDIA的LMA结构的出发点和ATI十分类似,他们希望通过优化显存带宽的方法来达到最大限度利用板载230MHz DDR显存的目的。其中首要的创新是多路交叉显存控制器(Crossbar Memory Controller)。我们知道128位的DDR显存在一个时钟周期内可以同时传递2次数据,换句话来讲就是一次可以传递256位的数据包。但问题就出在这里:如果一个数据包的容量只有64位,也会占用一个数据传送周期,也就是在硬件端发送数据时仍然被当做256位来看待的,所以这里带宽的利用率实际上就只有25%非常低下。现在GeForce3改变了这个情况。它提供了并行工作的4个显存控制器,这些装置能够在与GPU通讯的同时互相联系,具体一点就是4个控制器分别掌管64位数据带宽,在遇到大数据包时(>64位)可以整合在一起工作,遇到小的数据包时各自为战。这样的处理方式极大地提高了显存带宽的利用率。

在LMA架构中的第二项技术是无损的Z轴数据压缩算法,这个改进思想来源于ATI RADEON。由于芯片处理每个像素的时候要考虑到它们在三维场景中的深度坐标,所以Z缓冲是显存和芯片之间数据传递的关键部分,带宽占用的分量最重。nVIDIA已经开发了一个可以将Z轴数据压缩四倍的算法,在不会带来任何精度丧失的同时,也节省了许多不必要的带宽浪费。 nVIDIA称之为光速显存架构亦可以称为VS(Visibility Subsystem,可见子系统)。它和隐藏表面去除(Hidden Surface Removal)有着密切的关系,这是一种在PowerVR和Mosaic芯片设计中得到大量论述的关键技术。如果没有这种技术,一块图形芯片必须处理CPU传送来的每个3D对象,甚至那些在最终图像中被临时遮蔽的对象。采用了绘制隐藏对象或表面的过程称之为超量绘制(OverDraw),它意味着图形芯片在一个典型3D游戏中要渲染2到4倍于所需的像素。这次nVIDIA已经加入了一个被称之为Z轴吸收选择(Z-Occlusion Culling)的技术来达到和隐藏面去除技术类似的效果。GeForce3通过在绘制一个帧的早期检查深度值来取消隐藏的像素,也就是在应用转换和光源效果之后。nVIDIA声称它预防超量绘制的方法在实际处理过程中可以获得50%-100%的性能提升。

其次是nVIDIA的nfinite FX引擎,nVIDIA在标准的T&L引擎旁边增加了一个高度可编程的动画和效果引擎,这就是“nfinite FX”引擎。它是GeForce3中最精密、复杂的新单元,与纯粹的T&L引擎相比它的应用更为广泛。虽然可编程性听起来更像是针对开发商而言,玩家或许不会对此关注,不过可以肯定一点的是没有人喜欢一再看到同样的3D特效!根据这样设计,游戏设计师们可以创造出独特和充满变化的效果。

nfiniteFX引擎分为2个部分:一个专用于处理像素的,另一个则专门用来处理顶点或几何效果。我们记得在GeForce2 GTS发布的时候,它的像素着色器(Pixel Shaders)的技术已经非常眩目。这次NVIDIA决定让它增值,新的技术叫做顶点着色器(Vertex Shaders)。新的顶点流水线可以优先传送实时可见的视觉效果。GeForce3中的可编程Vertex Shaders技术允许开发者有更多的选择。过去一个顶点数据包含了位置坐标(X,Y,Z)、颜色、光影和纹理结构数据,现在又多了一个Vertex Shaders数据。它可以在不需要CPU经常发送指令的前提下改变3D对象。顶点Shader效果尤其生动,因为它们可以控制一个物体的形状、动画或光线。很方便地 *** 控一个顶点数据浮现在别的表面,表现不同的透明度以及不同的色彩等。当然了并不是每个顶点都需要进入到Vertex Shaders中进行处理,只有当有特殊要求的时候,这才是必要的。

eForce 8系列,GeForce 9系列和第十代产品“GeForce+定位+型号”系列。

原理:IGBT的等效电路如图1所示。从图1可以看出,如果在IGBT的栅极和发射极之间施加一个驱动正电压,MOSFET将导通,使得PNP晶体管的集电极和基极处于低阻状态,晶体管将导通。如果IGBT的栅极和发射极之间的电压为0V,则MOSFET关断,切断PNP晶体管基极电流的供应,从而晶体管关断。因此,IGBT的安全性和可靠性主要取决于以下几个因素:——IGBT的栅极和发射极之间的电压;3354的集电极和发射极之间的电压;3354流过IGBT集电极-发射极的电流;——IGBT的结温。如果IGBT的栅极和发射极之间的电压,即驱动电压太低,IGBT就不能稳定正常工作,如果太高,就可能永久损坏。同样,如果施加在IGBT集电极和发射极上的允许电压超过了集电极和发射极之间的耐受电压,流过IGBT集电极和发射极的电流超过了集电极和发射极允许的最大电流,IGBT的结温超过了其结温的允许值,IGBT就可能永久损坏。

IGBT具体怎么工作

IGBT控制电路1的工作原理。PCB1(主控板)对IGBT逆变器模块的控制信号由脉冲宽度调制电路(PCM PFM)输出,周期为50微秒,脉冲宽度可调,定时相差180度。如果用万用表DVC档进行测量,可以测出DC电压值。2.PCB2板(驱动板)为IGBT逆变器模块的驱动电路产生四个(全桥)隔离驱动信号。PCB1控制周期、脉宽和时序,分别驱动四个IGBT单元的开启和关闭。用万用表DCV测量时,先测得一个负电势,延迟一段时间后再测得一个大于这个负电势的电压。注意:不能用双通道示波器同时测量两个驱动信号。3.IGBT模块逆变电路IGBT模块和主变压器组成的逆变电路由滤波后的直流电组成,IGBT模块内部的大功率场效应晶体管由控制信号交替导通,逆变器输出为交流电(20KHZ)。主变压器降压后,在副边输出一个高频电压(70V)的交流电,再由后续的整流电路转换成70V左右的直流电。如果此电路有故障,请重点检查IGBT的性能和是否被击穿损坏,PCB3板的铜箔线是否被腐蚀或烧坏。希望你能理解并采纳。

IGBT管在逆变器驱动板上的作用和工作原理有哪些?

功能:IGBT在逆变器中的基本功能是做一个高速无触点电子开关。工作原理:利用IGBT的开关原理,IGBT可以根据你的控制信号,利用控制电路给出适当的通断信号,将DC转换成交流电,DC转换成交流电后电压会降低。比如列车供电系统的600V DC由380V交流电整流而来,IGBT逆变驱动板的作用就是还原这个过程。同时可以通过调节控制信号的脉宽来控制电流,也可以控制交流频率,从而控制电机的转速。IGBT模块是一种模块化的半导体产品,由IGBT(绝缘栅双极晶体管芯片)和FWD(二极管芯片)通过特定的电路桥封装而成。封装后的IGBT模块直接应用于逆变器、UPS等设备。IGBT模块具有节能、安装维护方便、散热稳定等特点。目前,这些模块化产品大多在市场上销售。一般来说,IGBT也指IGBT模块。随着节能环保的推广,这类产品在市场上会越来越常见。

IGBT逆变器工作原理是什么?

IGBT的工作原理:以DC电路逆变为单相交流电路为例:用四个IGBT代替全桥整流电路的四个二极管,不同的是IGBT的导通可以通过控制它们的基极来实现。如果从上到下排列四个IGBT,从左到右的顺序是V1、V2、V3、V4;其中V1和V2串联,V3和V4串联,V1和V2与V3和V4并联,V1和V3的集电极接DC正极,V2和V4的发射极接DC负极,所以四个IGBT的导通顺序设置为:V1和V4同时导通, V2和V3同时关闭-V2和V3同时打开,V1和V4同时打开,V2和V3同时关闭。 如此反复,就可以实现

如果你是自己用的话,我建议你用SONY PD190吧。凤凰卫视每个新闻记者站都是用它的。所以每当有突发事件,他们总会在现场。松下的DVC180也不错。

现在电视台所用的主流摄像机无非以下几大类

SONY BETACAM SX

SONY MPEG IMX

松下 DVCPRO 50M

摄像机,防水数码摄像机,摄像机种类繁多,其工作的基本原理都是一样的:把光学图像信号转变为电信号,以便于存储或者传输。当我们拍摄一个物体时,此物体上反射的光被摄像机镜头收集,使其聚焦在摄像器件的受光面(例如摄像管的靶面)上,再通过摄像器件把光转变为电能,即得到了“视频信号”。光电信号很微弱,需通过预放电路进行放大,再经过各种电路进行处理和调整,最后得到的标准信号可以送到录像机等记录媒介上记录下来,或通过传播系统传播或送到监视器上显示出来。

完成图像分解和光电信号转换的器件。图像分解是把一幅完整图像分解成若干独立的像素(构成电视图像画面的最小单元)的过程。一般说,像素的数目愈多,图像愈清晰。每个像素只用单一的颜色和亮度表示。摄像器件能把图像中各像素的光信号转变成相应的电信号,再按一定的顺序传送到输出端。摄像器件分摄像管和固体(半导体)摄像器件两大类。

①摄像管、电子束器件,又分为析像管、光电倍增析像管、超正析像管和光导摄像管等几种。新型摄像机中多使用小巧的氧化铅光电摄像管。各种摄像管都有一个真空玻壳,里面装有靶面和电子q。被摄景物透过玻壳上的窗成像于靶面,利用靶面的光电发射效应或光电导效应将靶面各点的照度分布转化为相应的电位分布,将光图像变成电图像。在管外偏转线圈驱动下,电子束逐点逐行扫描靶面,把扫描路径上各像素的电位信号按序输出。

②固体摄像器件,一种新型的电荷耦合器件 (CCD)。几十万个器件单元排列成阵面,表层具有光敏特性。被摄景物成像于阵面,各单元存储电荷量和照度成正比。利用时钟脉冲和移位控制信号,将阵面各单元信号按一定顺序移出,即可得到强度随时间变化的图像电信号。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7107635.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-01
下一篇 2023-04-01

发表评论

登录后才能评论

评论列表(0条)

保存