意法半导体简介及详细资料

意法半导体简介及详细资料,第1张

公司概况

意法公司销售收入在半导体工业第七大高速增长市场之间分布均衡(五大市场占2007年销售收入的百分比):通信(35%),消费(17%),计算机(16%),汽车(16%),工业(16%)。据最新的工业统计数据,意法半导体(STMicroelectronics)是全球第五大半导体厂商,在很多市场居世界领先水平。例如,意法半导体是世界第一大专用模拟晶片和电源转换晶片制造商,世界第一大工业半导体和机顶盒晶片供应商,而且在分立器件、手机相机模组和车用积体电路领域居世界前列。

产品阵容

以多媒体套用一体化和电源解决方案的市场领导者为目标,意法半导体拥有世界上最强大的产品阵容,既有智慧财产权含量较高的专用产品,也有多领域的创新产品,例如分立器件、高性能微控制器、安全型智慧卡晶片、微机电系统(MEMS)器件。

在移动多媒体、机顶盒和计算机外设等要求严格的套用领域,意法半导体是利用平台式设计方法开发复杂IC的开拓者,并不断对这种设计方法进行改进。意法半导体拥有比例均衡的产品组合,能够满足所有微电子用户的需求。全球战略客户的系统级晶片(SoC)项目均指定意法半导体为首选合作伙伴,同时公司还为本地企业提供全程支持,以满足本地客户对通用器件和解决方案的需求。

意法半导体已经公布了与英特尔和Francisco Partners合资成立一个独立的半导体公司的合作意向,名为Numonyx的新公司将主要提供消费电子和工业设备用非易失存储器解决方案。

研发制造

自创办以来,意法半导体在研发的投入上从未动摇过,被公认为半导体工业最具创新力的公司之一。制造工艺包括先进的CMOS逻辑(包括嵌入式存储器的衍生产品)、混合信号、模拟和功率制造工艺。在先进的CMOS领域,意法半导体将与IBM联盟合作开发下一代制造工艺,包括32nm 和 22nm CMOS工艺开发、设计实现技术和针对300mm晶圆制造的先进研究,此外,意法半导体和IBM还将利用位于法国Crolles的300mm生产设施开发高附加值的CMOS衍生系统级晶片技术。

意法半导体在全球拥有一个巨大的晶圆前后工序制造网路(前工序指晶圆制造,后工序指组装、封装和测试)。公司正在向轻资金密集型制造战略转型,最近公布了关闭一些旧工厂的停产计画。目前,意法半导体的主要晶圆制造厂位于义大利的Agrate Brianza和Catania、法国的Crolles、Rousset和Tours、美国的Phoenix和Carrollton,以及新加坡。位于中国、马来西亚、马尔它、摩洛哥和新加坡的高效封装测试厂为这些先进的晶圆厂提供强有力的后工序保障。

跨国联盟

意法半导体发展了一个全球战略联盟网路,包括与大客户合作开发产品、与客户和半导体厂商合作开发技术、与主要供应商合作开发设备和CAD工具。此外,意法半导体还与全球名牌大学和知名研究机构开展各种研究项目,通过学术研究促进工业研发活动。意法半导体还担纲MEDEA+等欧洲先进技术研究计画和ENIAC(欧洲纳米技术计画顾问委员会)等工业计画。

卓越原则

意法半导体是世界上第一个认识到环境责任重要性的国际半导体公司之一,早在上个世纪90年代就开始公司的环境责任行动,此后,在环境问题上取得了令人嘱目的进步,例如,在1994年到2006年间,每个生产单位能耗降低47%,CO2排放量降低61%。此外,意法半导体远远走在了现有法规的前面,在制造过程中几乎完全摒弃了铅、镉和汞等有害物质。自1991年起,在质量、公司管理、社会问题和环保等公司责任方面,各地区公司因为表现卓越而荣获100多项奖励。

基本情况

意法半导体(ST)公司成立于1987年,是义大利SGS半导体公司和法国汤姆逊半导体合并后的新企业,从成立之初至今,ST的增长速度超过了半导体工业的整体增长速度。自1999年起,ST始终是世界十大半导体公司之一。

整个集团共有员工近50,000名,拥有16个先进的研发机构、39个设计和套用中心、15主要制造厂,并在36个国家设有78个销售办事处。

公司总部设在瑞士日内瓦,同时也是欧洲区以及新兴市场的总部公司的美国总部设在德克萨斯州达拉斯市的卡罗顿亚太区总部设在新加坡日本的业务则以东京为总部大中国区总部设在上海,负责香港、大陆和台湾三个地区的业务。

自1994年12月8日首次完成公开发行股票以来,意法半导体已经在纽约证券交易所(交易代码:STM)和泛欧巴黎证券交易所挂牌上市,1998年6月,又在义大利米兰证券交易所上市。意法半导体拥有近9亿股公开发行股票,其中约71.1%的股票是在各证券交易所公开交易的。另外有27.5%的股票由意法半导体控股II B.V.有限公司持有,其股东为Finmeanica和CDP组成的义大利Finmeanica财团和Areva及法国电信组成的法国财团剩余1.4%的库藏股由意法半导体公司持有。

产品范围

意法半导体是业内半导体产品线最广的厂商之一,从分立二极体与电晶体到复杂的片上系统(SoC)器件,再到包括参考设计、套用软体、制造工具与规范的完整的平台解决方案,其主要产品类型有3000多种,。意法半导体是各工业领域的主要供应商,拥有多种的先进技术、智慧财产权(IP)资源与世界级制造工艺。

半导体产品大体上可分为两类:专用产品和标准产品。专用产品从半导体制造商以及用户和第三方整合了数量众多的专有IP,这些使其区别于市场上的其他产品,例如:

片上系统(SoC)产品

定制与半定制电路

专用标准产品(ASSP),如:无线套用处理器、机顶盒晶片及汽车IC

微控制器

智慧卡IC

专用存储器

专用分立器件 (ASD™)

一旦客户在套用中使用了专用产品,如果不修改硬体和软体设计,通常就不能进行产品替换。

相反,标准产品是实现某种特定的常用功能的器件,这些器件一般由几个供应商提供。通常,制造商推出的标准产品可以被其他制造商的同类产品所取代,供应商间的差别主要在于成本与客户服务上。然而,一旦套用设计被冻结,标准器件在性能最佳化方面也将变成唯一的器件。

标准产品包括:

分立器件,如电晶体、二极体与晶闸管

功率电晶体,如MOSFET、Bipolar与IGBT

模拟电路构建模组,如运算放大器、比较器、稳压器与电压参考电路

标准逻辑功能与接口

众多存储器产品,如标准或串列NOR快闪记忆体、NAND快闪记忆体、EPROM/EEPROM及非易失性RAM

射频分立器件及IC

自成立时起,意法半导体就成功的实现了在市场开拓方面的平衡,将差分化的专用产品(这些产品通常不容易受到市场周期的影响)与传统的标准产品(这些产品要求较少的研发投入和生产资本密集度)相结合。意法半导体多样化的产品系列避免了对通用产品或专用产品的过分依赖。

专用产品 片上系统

专用产品系列中最复杂的就是SoC器件,该器件在单个晶片上集成了完整的系统。很多情况下,这意味着整个套用的集成,也就是说器件整合了除存储器、无源元件与显示器等无需集成的组件外的所有电子电路。然而,通常在单个晶片上集成整个系统并不是最经济的解决方案,因此SoC这个术语也用于指那些集成了大部分系统的晶片。

SoC技术拓展了半导体行业在一个给定的矽片上持续增加电晶体数目的能力。然而它还涉及很多其他因素,包括系统知识、软体技术、架构创新、设计、验证、调试及测试方法。随着半导体器件在电子设备中的普及其对设备性能、价格、开发时间的重要影响,设备制造商对半导体供应商提供的完整平台解决方案的依赖性也越来越高。如今,半导体供应商可以给客户提供完整地解决方案,包括定制的参考设计、完整的软体包(含有底层驱动软体、嵌入式作业系统以及中间件和套用软体)。

很多SoC产品仅使用CMOS技术就可以制造,但完整的SoC制造技术要求具有将COMS、bipolar、非易失性存储器、功率DMOS及微型机电系统(MEMS)之类的基础技术整合到面向系统的技术(这种技术整合了两种或更多的基础技术)中的能力。多年来,意法半导体一直是开发与采用这些面向系统的技术领域的全球领导者。

SoC器件通常集成一个或多个处理器核,意法半导体为客户提供了世界上最广泛的处理器核,包括主要用于无线与汽车套用的基于32位高性能ARM和基于PowerPC的产品。意法半导体在处理器核技术上采用了开放式方法,旨在为客户提供最合适的处理器核,而不论它是专利的、联合开发的或是第三方授权的。

定制晶片

定制与半定制IC都是为特殊用户而设计的,但它们的设计与制造方法不同。半定制晶片是包含了一系列电路单元的通用晶片,这些单元能够以多种方式实现互连,从而实现想要的功能。而定制晶片则是从零开始设计的。一些客户更喜欢设计自己的晶片(特别是包含了珍贵的IP的晶片)并根据成本、产能分配及先前的业务关系等标准,与晶片制造商达成契约制造。而其他一些客户则更愿意与晶片供应商就设计和制造这两方面达成协定,因此,这儿存在着一系列中间关系。

意法半导体提供了一系列利用世界级制造机械、无与伦比的半导体工艺技术,广泛而深入的IP系列和领先的设计方法的定制与半定制服务。这些成功案例就是采用复杂晶片,推动了大型项目,如美国的XM数字卫星无线电服务与为电子行业的各部分的战略伙伴而提供的领先的解决方案。

标准产品

ASSP(专用标准产品)是为在特殊套用中使用而设计的积体电路。实例包括数字机顶盒晶片、CMOS成像IC、电机控制电路与无线套用处理器。与为单用户的特殊套用而设计的定制IC不同,ASSP是为众多用户通用的特殊套用而设计的。很多ASSP是在与特殊客户密切合作的基础上开发出来的,即使相应器件可能会在开放市场上提供。通过以这种方式与客户合作,意法半导体能够保证其开发的产品与技术能很好地与不断变化的工业需求相匹配。

意法半导体的产品系列包括多种类型的ASSP,针对无线通信与网路、数字消费类、电脑外设、汽车、工业及智慧卡等的主要增长业务套用进行了最佳化。通过提供晶片组与完整的参考平台、公认的软体包与开发套件,公司使得其用户能够快速而经济地开发并区分其产品。

意法半导体的ASSP,包括从移动成像到多媒体处理,再到功率管理和手提式及网路连线的各种套用,满足了广泛的电信套用需求。公司提供了用于广泛的数字消费类套用的元器件,特别侧重于机顶盒、数位电视与数位相机等套用。

在电脑外设领域中,意法半导体主要集中在数据存储、列印、可视显示器、PC主机板的电源管理和电源。广泛的意法半导体ASSP功率/复杂的数字汽车系统,如引擎控制、汽车安全设备、车门模组及车载信息娱乐系统等。公司还提供用于工厂自动化系统的工业IC、用于照明和电池充电的晶片、或电源器件以及用于高级智慧卡套用的晶片。

微控制器

意法半导体的微控制器提供了各类套用,从那些首先要求成本最低的套用到需要强大实时性能与高级语言支持的套用。意法半导体全面的产品系列包含了功能强大的带有标准通信接口的8位通用快闪记忆体微控制器,如USB、CAN、LIN、UART、I2C及SPI专用8位微控制器,可用于无刷电机控制、低噪音模组转换器(LNB)、智慧卡读卡器、USB接口的快闪记忆体驱动器和可程式系统存储器(PSM),此存储器在单晶片上集成了存储器,微控制器和可程式逻辑单元16位的工控标准器件和基于高性能32位ARM核心的快闪记忆体控制器,具有卓越的低功耗特性及高级通信外设(包括乙太网、USB与CAN)。

意法半导体专用的微控制器解决方案有助于加速新兴的低数据率无线网路的开发,如实时定位系统(RTLS)和用于远程监视和控制的Zigbee平台。

安全IC

意法半导体为智慧卡和委托产品套用领域,连同广泛的高速产品系列、可共同使用的片上作业系统(SoC)解决方案提供了完整的安全微控制器和存储器。产品用于各类智慧卡套用,从最简单的电话卡到要求最严格的SIM与Pay-TV卡。安全性一直是意法半导体的一项专门技术,多项正式的安全证明、标准化的成员资格、意法半导体安全IC产品在许多领域(包括银行、IT安全性、电子 *** 、公共运输和移动通信)的成功套用有力的证明了这一点。

存储器

虽然众多存储器产品是标准产品,但意法半导体利用其在非易失性存储器技术领域的优势及其与领先用户间稳固的关系,开发出了各种专用EEPROM和快闪记忆体。与领先的OEM合作,意法半导体开发出了针对手机、汽车引擎控制、PC BIOS、机顶盒与硬碟驱动器之类的特殊套用进行了最佳化的创新产品。

分立器件

ASD产品基于在矽片晶元的顶端与底端实现的垂直或水平双极型架构。ASD™ 技术使得意法半导体能为市场带来各类产品,这些产品可处理大双向电流、保持高电压,并可在单晶片中集成各类分立元件。ASD技术是通用保护元器件、ESD保护器件、EMI滤波器与具有内置过压保护的AC开关的理想解决方案。随着近期工艺的升级,ASD技术允许在单晶片中集成多个分立元器件和无源元件(如电阻、电容与电感),从而产生了IPAD系列(集成无源与有源器件)。ASD的主要套用领域是无线与固定线路通信、家电、PC及外设。

标准产品 存储器

意法半导体为领先套用提供了业内最广泛的存储解决方案。意法半导体是非易失性存储器的主要供应商,包括:NOR和NAND 快闪记忆体。

快闪记忆体组合了高密度及电可擦除性。它们普遍套用于各种数字套用中,如手机、数位相机、数位电视、机顶盒、汽车引擎控制等,这些套用需要在系统可程式能力,并需要即使在没有电源的情况下也要保留数据。

作为全球三大NOR快闪记忆体供应商之一,意法半导体提供了两种主要的快闪记忆体类型:NOR及NAND。NOR快闪记忆体架构提供快速读取性能,是在手机和其他电子器件中进行代码存储与直接片上执行的理想之选。然而,对于高密度数据存储,NAND快闪记忆体较高的密度与编程吞吐量使其成为首选。

意法半导体的非易失性存储器系列还包括EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、串列快闪记忆体及非易失性RAM(Random Aess Memory)。

其他意法半导体的存储器产品还包含多种RFID IC。跟所有标准器件一样,成本与客户服务是供应商之间的主要差异,而意法半导体正在全力最佳化这两个方面。

对于既需要快速代码读取又需要高密度的套用(如现今的多功能手机),意法半导体同样提供了先进的多晶片解决方案,在单晶片封装内组合了不同类型的存储器。

智慧型电源

意法半导体的电源器件满足了对于整合了信号处理部件(模拟和/或数字)和电动促动器的功率解决方案不断增长的需求。此设计能力不仅提供了独有的经济优势,同时还提供了稳定性、电磁性能和降低空音与重量等方面的提高。智慧型电源作为一个专业术语,包括了多种横向及纵向的技术,这些技术在在汽车市场尤其起到至关重要的作用。

VIPower(垂直智慧型电源)是众多专利智慧型电源技术的总称,这些技术中,分立的电源结构现模拟和数字控制及诊断电流相结合,从而使器件可以将分立技术的强劲性与电流的控制与诊断功能相结合。意法半导体的BCD(双极-CMOS-DMOS)生产技术结合了双极、CMOS和DMOS工艺,允许集成越来越多的系统基本功能,如电压稳压器、通信接口以及一个单独元件中的多负载驱动器。

标准器件

意法半导体标准线性器件与逻辑IC由广泛的知名标准器件及针对高度集成、空间有限的套用创新的专用器件组成。产品范围包括逻辑功能、接口、运算放大器、比较器、低功耗音频放大器、通信电路(高速模拟、红外线与RF)、功率管理器件、稳压器与参考电路、微处理器复位与监视器、模拟与数字开关、功率开关、VFD驱动器及高亮度LED驱动器。

分立器件

意法半导体是世界领先的分立功率器件供应商之一,产品范围包含MOSFET (包括运用创新的MDmeshTM第二代技术的器件)、双极电晶体、IGBT、肖特基与超快速恢复双极工艺二极体、三端双向可控矽开关及保护器件。此外,意法半导体的专利IPAD(集成有源和无源器件)技术,允许在单个晶片中整合多个有源和无源元件

RF

意法半导体的RF产品包括可以用于ISM(工业科学和医疗),手机基站之类的套用中的功率RF电晶体。

实时时钟

意法半导体提供了完整的低功耗实时时钟(RTC)产品线,从输入级产品到具有微处理器监视功能、SRAM、非易失性特性与通用减少检测管教实现的高级数据保护的高端RTC。嵌入式软体校准每个月的精度误差仅为2秒。

所获荣誉

2020年5月13日,意法半导体名列2020福布斯全球企业2000强榜第822位。

ST联盟

战略联盟和行业合作

自诞生以来,意法半导体公司成了创建战略联盟的先锋,并在发展与用户、供应商、竞争者、大学、研究机构和欧洲研究项目的关系方面得到了大家的公认。战略联盟和行业合作对于在半导体行业中取得成功变得越来越重要。

意法半导体公司(STMicroelectronics)已经跟包括Alcatel、Bosch、Hewlett-Packard、Marelli、Nokia、Nortel、Pioneer、Seagate、Siemens VDO、Thomson和Western Digital等在内的用户成立了几个战略联盟。用户联盟为意法半导体公司提供了宝贵的系统和套用专长及进入主要产品市场的途径,同时使得它的用户能够分担产品开发的风险,而且还能使用意法半导体公司的工艺技术和生产设施。意法半导体公司现在正在积极利用其丰富的经验和技术来扩展其面向美国、欧洲和亚洲顶级OEM的用户联盟的数量。

在继续在激烈的销售竞争中打拼的同时,与其它半导体行业制造商合作使得意法半导体公司能够增加其对高昂的研究与开发以及生产资源的投资,从而实现技术开发的互利互惠。

意法半导体公司是无线技术领域内的常胜将军,2002年与Texas Instruments合作制定和推广无线套用处理器接口的开放式标准。该创新现已扩展到更多公司,并且以MIPI联盟(创始成员有ST、ARM、Nokia和Texas Instruments)著称。联盟现在拥有超过92个成员,合作成为移动行业的领袖,其目标是制定和推广移动套用处理器接口的开放式标准。

非易失性存储器是意法半导体公司的一个战略产品部门。在该领域中,意法半导体公司已与Hynix合作了4年,联合开发了NAND Flash技术和产品。至于NOR Flash,其已与Intel就无线套用的产品指标结成了战略联盟。并且,最近与Freescale签订协定,联合开发带有嵌入式Flash(采用90nm技术制造而成)的微控制器。

意法半导体公司还与领先供应商制定了联合开发计画,如Air Liquide、Applied Materials、ASM Lithography、Axalto、Canon、Hewlett-Packard、KLA-Tencor、LAM Research、MEMC、Teradyne和Wacker,以及包括Cadence、CoWare和Synopsys在内的领先电子设计自动化(EDA)工具制造商。

至于联合研究与开发计画,意法半导体公司还加入了欧洲合作研究计画,如MEDEA+(微电子技术及其套用领域高级合作研究与开发的泛欧计画)和ITEA2(欧洲发展信息技术,软体密集型系统和服务的高级竞争前研究与开发的战略性泛欧计画)。意法半导体公司还在最近创办的欧洲技术平台 - ENIAC(欧洲纳电子行动顾问委员会,用于提供纳电子的战略性研究方向)和ARTEMIS(嵌入式智慧型与系统先进研究和技术,其作用跟嵌入式系统类似) - 中起主导作用。并且,意法半导体公司还与全球众多大学合作,包括欧洲、美国和中国的大学以及主要研究机构,如CEA-Leti和IMEC。

至于制造业,1998年意法半导体公司在中国深圳建立了其后端组装和测试厂。该厂属于意法半导体公司与深圳市海达克实业有限公司(SHIC)共同组建的合资公司性质。2004年,意法半导体公司与Hynix签署并发表了合资协定,在中国无锡建立前端存储器制造厂。合资公司是公司间NAND Flash工艺/产品联合开发关系的延伸,拥有拟于2006年底投入生产的200-mm晶圆生产线和拟于2007年投入生产的300-mm晶圆生产线。

ST大学 大学简介

以管理和现场培训需求为基准,ST大学开发并部署了在企业范围内进行的战略型培训项目。ST大学与ST的各个培训机构密切合作,推出了用于满足ST和ST大学不断变化的培训需求的培训项目课程。

在ST大学培训目录中,只有一个培训项目是同时面向ST员工和外部工程师的。该技术课程的主要目的是发展微电子制造管理领域中的技术专长。

这个独特的项目是由意法半导体公司和法国2家知名工学院 - "L'Ecole Nationale Supérieure des Mines" de Saint-Etienne 与 "l'Ecole Centrale" Marseille - 合作推出的。它为在当今要求严苛的微电子行业中起着重要作用的工程师提供技术和管理技能。为了跟上微电子行业领先技术的步伐,ST大学每年都会在业内专家、学者和研究员的支持下对整个项目进行改进。ST大学发展并改善了理论课程与套用之间的关系,以及ST业内专家和ST供应商的参与。

课程

该项目分为2个主要部分:

第1部分:着重介绍下列3个领域的基础知识和套用课程:

器件和技术:物理特征工具和制造工艺步骤。

积体电路的开发:设计工具、测试和后端 *** 作。

生产和管理工具:生产设备管理、生产技术、可靠性和质量系统。

第2部分:为期6个月的公司(主要是在ST)实习,着重学习和项目有关的特定科目。

中国联合

意法半导体(STMicroelectronics,简称ST)与中国第一汽车股份有限公司(一汽,FAW)宣布在汽车电子技术领域进行合作,同时在一汽技术中心成立一汽-意法半导体汽车电子联合实验室。联合实验室将面向先进的汽车电子技术方案,研发范围包括动力总成、底盘、安全系统、车身、汽车信息娱乐系统、新能源技术等。一汽将在其先进的汽车电子研发平台内引入意法半导体的微控制器(MCU)、专用标准产品(ASSP)和智慧型驱动晶片。

联合实验室的主要研发方向是先进的汽车电子套用。借助意法半导体的汽车电子研发经验、技术优势、产品(如意法半导体的PowerPC系列32位微控制器和发动机管理系统高集成晶片)、原型设计和技术支持,联合实验室将推动双方在汽车电子技术方面的合作研发,例如,ECU(发动机控制单元)、TCU(变速器控制单元)和EPS(电动助力转向系统),这些研发成果将增强一汽下一代汽车的市场竞争力。

一汽集团副总工程师兼技术中心主任李骏表示:"中国汽车销售量连续三年居全球首位,随着消费者对汽车安全性和舒适度越来越关注,汽车电子市场也在高速增长,中国是一个巨大的汽车半导体市场。一汽与意法半导体建立联合实验室,有助于推动双方的深入合作,提升一汽汽车电子的核心竞争力,促进汽车电子产品的自主创新能力。"

意法半导体大中国与南亚区汽车产品部市场与套用经理Edoardo Merli表示:"我们非常高兴能够与中国领先的汽车OEM厂商一汽合作。意法半导体作为2011年中国排名第一[1]、全球第三[2]的汽车晶片供应商,在动力总成、车身、安全、信息娱乐和车载多媒体方面具有很大的优势,这种优势得到了中国汽车厂商的认可。我们相信,双方的合作也将加强意法半导体在中国汽车电子业的领先地位。"

半导体二极管参数符号

CT-势垒电容

Cj-结(极间)电容,表示在二极管两端加规定偏压下,锗检波二极管的总电容

Cjv-偏压结电容

Co-零偏压电容

Cjo-零偏压结电容

Cjo/Cjn-结电容变化

Cs-管壳电容或封装电容

Ct-总电容

CTV-电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比

CTC-电容温度系数

Cvn-标称电容

IF-正向直流电流(正向测试电流)。

锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流

IF(AV)-正向平均电流

IFM(IM)-正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。

IH-恒定电流、维持电流。

Ii-发光二极管起辉电流

IFRM-正向重复峰值电流

IFSM-正向不重复峰值电流(浪涌电流)

Io-整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流

IF(ov)-正向过载电流

IL-光电流或稳流二极管极限电流

ID-暗电流

IB2-单结晶体管中的基极调制电流

IEM-发射极峰值电流

IEB10-双基极单结晶体管中发射极与第一基极间反向电流

IEB20-双基极单结晶体管中发射极向电流

ICM-最大输出平均电流

IFMP-正向脉冲电流

IP-峰点电流

IV-谷点电流

IGT-晶闸管控制极触发电流

IGD-晶闸管控制极不触发电流

IGFM-控制极正向峰值电流

IR(AV)-反向平均电流

IR(In)-反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电 流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。

IRM-反向峰值电流

IRR-晶闸管反向重复平均电流

IDR-晶闸管断态平均重复电流

IRRM-反向重复峰值电流

IRSM-反向不重复峰值电流(反向浪涌电流)

Irp-反向恢复电流

Iz-稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流

Izk-稳压管膝点电流

IOM-最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流

IZSM-稳压二极管浪涌电流

IZM-最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流

iF-正向总瞬时电流

iR-反向总瞬时电流

ir-反向恢复电流

Iop-工作电流

Is-稳流二极管稳定电流

f-频率

n-电容变化指数;电容比

Q-优值(品质因素)

δvz-稳压管电压漂移

di/dt-通态电流临界上升率

dv/dt-通态电压临界上升率

PB-承受脉冲烧毁功率

PFT(AV)-正向导通平均耗散功率

PFTM-正向峰值耗散功率

PFT-正向导通总瞬时耗散功率

Pd-耗散功率

PG-门极平均功率

PGM-门极峰值功率

PC-控制极平均功率或集电极耗散功率

Pi-输入功率

PK-最大开关功率

PM-额定功率。硅二极管结温不高于150度所能承受的最大功率

PMP-最大漏过脉冲功率

PMS-最大承受脉冲功率

Po-输出功率

PR-反向浪涌功率

Ptot-总耗散功率

Pomax-最大输出功率

Psc-连续输出功率

PSM-不重复浪涌功率

PZM-最大耗散功率。在给定使用条件下,稳压二极管允许承受的最大功率

RF(r)-正向微分电阻。在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻

RBB-双基极晶体管的基极间电阻

RE-射频电阻

RL-负载电阻

Rs(rs)-串联电阻

Rth-热阻

R(th)ja-结到环境的热阻

Rz(ru)-动态电阻

R(th)jc-结到壳的热阻

rδ-衰减电阻

r(th)-瞬态电阻

Ta-环境温度

Tc-壳温

td-延迟时间

tf-下降时间

tfr-正向恢复时间

tg-电路换向关断时间

tgt-门极控制极开通时间

Tj-结温

Tjm-最高结温

ton-开通时间

toff-关断时间

tr-上升时间

trr-反向恢复时间

ts-存储时间

tstg-温度补偿二极管的贮成温度

a-温度系数

λp-发光峰值波长

△λ-光谱半宽度

η-单结晶体管分压比或效率

VB-反向峰值击穿电压

Vc-整流输入电压

VB2B1-基极间电压

VBE10-发射极与第一基极反向电压

VEB-饱和压降

VFM-最大正向压降(正向峰值电压)

VF-正向压降(正向直流电压)

△VF-正向压降差

VDRM-断态重复峰值电压

VGT-门极触发电压

VGD-门极不触发电压

VGFM-门极正向峰值电压

VGRM-门极反向峰值电压

VF(AV)-正向平均电压

Vo-交流输入电压

VOM-最大输出平均电压

Vop-工作电压

Vn-中心电压

Vp-峰点电压

VR-反向工作电压(反向直流电压)

VRM-反向峰值电压(最高测试电压)

V(BR)-击穿电压

Vth-阀电压(门限电压)

VRRM-反向重复峰值电压(反向浪涌电压)

VRWM-反向工作峰值电压

V v-谷点电压

Vz-稳定电压

△Vz-稳压范围电压增量

Vs-通向电压(信号电压)或稳流管稳定电流电压

av-电压温度系数

Vk-膝点电压(稳流二极管)

VL-极限电压

二极管的特性与应用

几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。

二极管的工作原理

晶体二极管为一个由p型半导体和n型半导体形成的p-n结,在其界面处两侧形成空间电荷层,并建有自建电场。当不存在外加电压时,由于p-n 结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流I0。当外加的反向电压高到一定程度时,p-n结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

二极管的类型

二极管种类有很多,按照所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可分为检波二极管、整流二极管、稳压二极管、开关二极管、隔离二极管、肖特基二极管、发光二极管等。按照管芯结构,又可分为点接触型二极管、面接触型二极管及平面型二极管。点接触型二极管是用一根很细的金属丝压在光洁的半导体晶片表面,通以脉冲电流,使触丝一端与晶片牢固地烧结在一起,形成一个“PN结”。由于是点接触,只允许通过较小的电流(不超过几十毫安),适用于高频小电流电路,如收音机的检波等。面接触型二极管的“PN结”面积较大,允许通过较大的电流(几安到几十安),主要用于把交流电变换成直流电的“整流”电路中。平面型二极管是一种特制的硅二极管,它不仅能通过较大的电流,而且性能稳定可靠,多用于开关、脉冲及高频电路中。

二极管的导电特性

二极管最重要的特性就是单方向导电性。在电路中,电流只能从二极管的正极流入,负极流出。下面通过简单的实验说明二极管的正向特性和反向特性。

1. 正向特性。

在电子电路中,将二极管的正极接在高电位端,负极接在低电位端,二极管就会导通,这种连接方式,称为正向偏置。必须说明,当加在二极管两端的正向电压很小时,二极管仍然不能导通,流过二极管的正向电流十分微弱。只有当正向电压达到某一数值(这一数值称为“门槛电压”,锗管约为0.2V,硅管约为0.6V)以后,二极管才能直正导通。导通后二极管两端的电压基本上保持不变(锗管约为0.3V,硅管约为0.7V),称为二极管的“正向压降”。

2. 反向特性。

在电子电路中,二极管的正极接在低电位端,负极接在高电位端,此时二极管中几乎没有电流流过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时,仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端的反向电压增大到某一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这种状态称为二极管的击穿。

二极管的主要参数

用来表示二极管的性能好坏和适用范围的技术指标,称为二极管的参数。不同类型的二极管有不同的特性参数。对初学者而言,必须了解以下几个主要参数:

1、额定正向工作电流

是指二极管长期连续工作时允许通过的最大正向电流值。因为电流通过管子时会使管芯发热,温度上升,温度超过容许限度(硅管为140左右,锗管为90左右)时,就会使管芯过热而损坏。所以,二极管使用中不要超过二极管额定正向工作电流值。例如,常用的IN4001-4007型锗二极管的额定正向工作电流为1A。

2、最高反向工作电压

加在二极管两端的反向电压高到一定值时,会将管子击穿,失去单向导电能力。为了保证使用安全,规定了最高反向工作电压值。例如,IN4001二极管反向耐压为50V,IN4007反向耐压为1000V。

3、反向电流

反向电流是指二极管在规定的温度和最高反向电压作用下,流过二极管的反向电流。反向电流越小,管子的单方向导电性能越好。值得注意的是反向电流与温度有着密切的关系,大约温度每升高10,反向电流增大一倍。例如2AP1型锗二极管,在25时反向电流若为250uA,温度升高到35,反向电流将上升到500uA,依此类推,在75时,它的反向电流已达8mA,不仅失去了单方向导电特性,还会使管子过热而损坏。又如,2CP10型硅二极管,25时反向电流仅为5uA,温度升高到75时,反向电流也不过160uA。故硅二极管比锗二极管在高温下具有较好的稳定性。

半导体二极管参数符号及其意义

CT---势垒电容

Cj---结(极间)电容, 表示在二极管两端加规定偏压下,锗检波二极管的总电容

Cjv---偏压结电容

Co---零偏压电容

Cjo---零偏压结电容

Cjo/Cjn---结电容变化

Cs---管壳电容或封装电容

Ct---总电容

CTV---电压温度系数。在测试电流下,稳定电压的相对变化与环境温度的绝对变化之比

CTC---电容温度系数

Cvn---标称电容

IF---正向直流电流(正向测试电流)。锗检波二极管在规定的正向电压VF下,通过极间的电流;硅整流管、硅堆在规定的使用条件下,在正弦半波中允许连续通过的最大工作电流(平均值),硅开关二极管在额定功率下允许通过的最大正向直流电流;测稳压二极管正向电参数时给定的电流

IF(AV)---正向平均电流

IFM(IM)---正向峰值电流(正向最大电流)。在额定功率下,允许通过二极管的最大正向脉冲电流。发光二极管极限电流。

IH---恒定电流、维持电流。

Ii--- 发光二极管起辉电流

IFRM---正向重复峰值电流

IFSM---正向不重复峰值电流(浪涌电流)

Io---整流电流。在特定线路中规定频率和规定电压条件下所通过的工作电流

IF(ov)---正向过载电流

IL---光电流或稳流二极管极限电流

ID---暗电流

IB2---单结晶体管中的基极调制电流

IEM---发射极峰值电流

IEB10---双基极单结晶体管中发射极与第一基极间反向电流

IEB20---双基极单结晶体管中发射极向电流

ICM---最大输出平均电流

IFMP---正向脉冲电流

IP---峰点电流

IV---谷点电流

IGT---晶闸管控制极触发电流

IGD---晶闸管控制极不触发电流

IGFM---控制极正向峰值电流

IR(AV)---反向平均电流

IR(In)---反向直流电流(反向漏电流)。在测反向特性时,给定的反向电流;硅堆在正弦半波电阻性负载电路中,加反向电压规定值时,所通过的电流;硅开关二极管两端加反向工作电压VR时所通过的电流;稳压二极管在反向电压下,产生的漏电流;整流管在正弦半波最高反向工作电压下的漏电流。

IRM---反向峰值电流

IRR---晶闸管反向重复平均电流

IDR---晶闸管断态平均重复电流

IRRM---反向重复峰值电流

IRSM---反向不重复峰值电流(反向浪涌电流)

Irp---反向恢复电流

Iz---稳定电压电流(反向测试电流)。测试反向电参数时,给定的反向电流

Izk---稳压管膝点电流

IOM---最大正向(整流)电流。在规定条件下,能承受的正向最大瞬时电流;在电阻性负荷的正弦半波整流电路中允许连续通过锗检波二极管的最大工作电流

IZSM---稳压二极管浪涌电流

IZM---最大稳压电流。在最大耗散功率下稳压二极管允许通过的电流

iF---正向总瞬时电流

iR---反向总瞬时电流

ir---反向恢复电流

Iop---工作电流

Is---稳流二极管稳定电流

f---频率

n---电容变化指数;电容比

Q---优值(品质因素)

δvz---稳压管电压漂移

di/dt---通态电流临界上升率

dv/dt---通态电压临界上升率

PB---承受脉冲烧毁功率

PFT(AV)---正向导通平均耗散功率

PFTM---正向峰值耗散功率

PFT---正向导通总瞬时耗散功率

Pd---耗散功率

PG---门极平均功率

PGM---门极峰值功率

PC---控制极平均功率或集电极耗散功率

Pi---输入功率

PK---最大开关功率

PM---额定功率。硅二极管结温不高于150度所能承受的最大功率

PMP---最大漏过脉冲功率

PMS---最大承受脉冲功率

Po---输出功率

PR---反向浪涌功率

Ptot---总耗散功率

Pomax---最大输出功率

Psc---连续输出功率

PSM---不重复浪涌功率

PZM---最大耗散功率。在给定使用条件下,稳压二极管允许承受的最大功率

RF(r)---正向微分电阻。在正向导通时,电流随电压指数的增加,呈现明显的非线性特性。在某一正向电压下,电压增加微小量△V,正向电流相应增加△I,则△V/△I称微分电阻

RBB---双基极晶体管的基极间电阻

RE---射频电阻

RL---负载电阻

Rs(rs)----串联电阻

Rth----热阻

R(th)ja----结到环境的热阻

Rz(ru)---动态电阻

R(th)jc---结到壳的热阻

r δ---衰减电阻

r(th)---瞬态电阻

Ta---环境温度

Tc---壳温

td---延迟时间

tf---下降时间

tfr---正向恢复时间

tg---电路换向关断时间

tgt---门极控制极开通时间

Tj---结温

Tjm---最高结温

ton---开通时间

toff---关断时间

tr---上升时间

trr---反向恢复时间

ts---存储时间

tstg---温度补偿二极管的贮成温度

a---温度系数

λp---发光峰值波长

△ λ---光谱半宽度

η---单结晶体管分压比或效率

VB---反向峰值击穿电压

Vc---整流输入电压

VB2B1---基极间电压

VBE10---发射极与第一基极反向电压

VEB---饱和压降

VFM---最大正向压降(正向峰值电压)

VF---正向压降(正向直流电压)

△VF---正向压降差

VDRM---断态重复峰值电压

VGT---门极触发电压

VGD---门极不触发电压

VGFM---门极正向峰值电压

VGRM---门极反向峰值电压

VF(AV)---正向平均电压

Vo---交流输入电压

VOM---最大输出平均电压

Vop---工作电压

Vn---中心电压

Vp---峰点电压

VR---反向工作电压(反向直流电压)

VRM---反向峰值电压(最高测试电压)

V(BR)---击穿电压

Vth---阀电压(门限电压)

VRRM---反向重复峰值电压(反向浪涌电压)

VRWM---反向工作峰值电压

V v---谷点电压

Vz---稳定电压

△Vz---稳压范围电压增量

Vs---通向电压(信号电压)或稳流管稳定电流电压

av---电压温度系数

Vk---膝点电压(稳流二极管)

VL ---极限电压

二极管的识别

小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7112781.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-01
下一篇 2023-04-01

发表评论

登录后才能评论

评论列表(0条)

保存