半导体测试 Lot,Wafer,Bin,Die,分别对应的是图中的那些?

半导体测试 Lot,Wafer,Bin,Die,分别对应的是图中的那些?,第1张

T352光器件封装-光器件封装工艺之--lot、wafer、bar条、die、chip的区别

光通信女人

光通信女人

光通信女人

这是个挺有意思的话题,器件封装厂家介绍,“我们有Bar条解理和测试”时,内心常常充满了自豪,也经常会迎来参观访问者们一句“哦”。

今天国华聊几个名词,比如激光器lot、wafer、bar、die、chip都是指哪一种形态? 顺便聊下为什么激光器特有Bar条这个词。

半导体光芯片或者电芯片,最早都是一盘子做出来,在一个wafer上,或者叫晶元、晶圆。

无论是光模块里的激光器芯片、探测器芯片、驱动器电芯片,都是一盘一盘的做出来的。中间工艺有不同,设备不同,材料不同....

但都是一个圆盘子,早期小文【 [图文1]T218 半导体芯片制造流程与设备】,点击就可以链接。

国华之前小文说一盘子制作完成之后,整体用探针卡测试,把不良品标注(绿

光通信行业有个特殊的中间品,叫Bar条,这是什么神奇的东西呢。

比如,探测器芯片,可以直接给光一测有木有转成电,或者VCSEL是面发射,一盘子每个激光器加电,一测上面有没有光什么波长的光....。

FP、DFB是侧面发光,一盘子码的整齐的,侧面有没有光咱也看不到啊。咋办。

给它一条一条分开,侧面镀上膜做做端面处理,然后测试,好的坏的就可以区分。这个过程叫解理。

解理这个词是用在矿物质晶体上的,咱们光学的基本材料也是晶体啊,像掰巧克力一样,顺着纹理稍稍用力,就解开成一条条的。

“那直接掰成一块块的测试呗”

也不是不可以,羊毛出在羊身上,你让咱供应商一把把薅羊毛可以,一根一根薅羊毛也可以,用多少人费多少时间的问题呗。

能一盘盘测试,就不愿多费人力设备一条条测,能一条一条的测就不愿意一颗一颗的测。谁家的钱也不是大风刮来的。

Bar测好,再整成小芯片,这个小芯片,一颗颗的,有叫“晶粒”、有叫“chip”,也有叫“芯片或光芯片”,还有叫“管芯”...

为甚么有个管字,其实国华也没有找到确切出处, 或者可能是激光器也好,探测器也好,本质是个PN结,也就是二极管的“管”。

管它呢继续聊,做成一颗颗芯片就可以去封装成光器件了。

哦,对,咱们还有一个词,叫lot,其实一炉子(MOCVD)不只出一盘wafer,一般几盘放一起做,叫一个批次,材料的配比相同,工艺流程相同。

这同一批次叫一个lot,有些属性是通的,

做为一个自豪的底层劳动人民,劳动人民的自豪也是分层次的,自豪程度也是略有不同。

比如,越精细的越自豪:

有材料生长能力>晶圆能力>bar条测试能力>TO封装能力>OSA组装能力>光模块设计能力

越上游越自豪(甲方掏腰包的角色):

运营商>设备制造商>模块制造商>光器件制造商>芯片提供商>辅材配料商

资源越稀缺越自豪:

光芯片制造能力>电芯片制造能力>封装能力>芯片使用者

在国华的看法里,一个产业良性共同发展才是大道之理,共同把一个蛋糕做精美,无论做蛋糕的师傅、卖蛋糕的店员、买蛋糕的美女都会开心、掏腰包的大哥略忧伤。

一个良性产业各自做各自专业的事,多赢,成就的是一个大环境大氛围。

君不见相机产业链的翘楚‘柯达’不是败给竞争对手,而是败给另一个产业,手机业的崛起,使得每一个手机都成为了相机。

在同一个产业内,竞争是避免不了的,如果站在对手的角度审视自己、发现问题解决问题也是提升自身的一种途径,有序的竞争与协作是个好事情。

我家大哥在家总想欺负欺负我,树立一种权威,他多歇着我多干活,他管攒钱我管挣钱。家庭话语权这是红果果的竞争啊,可是谁敢揍一下国华,我家大哥能跟他玩儿命,这也是红果果的协作。

国华今天班了个门弄了个斧,见谅见谅。

半导体

[bàn dǎo tǐ]

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。二极管是采用半导体制作的器件。

中文名:半导体

外文名:semiconductor

应用:收音机、电视机以及测温

物质形式:气体、等离子体等

简介

物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差或不好的材料,如煤、人工晶体、琥珀、陶瓷等等,称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可

点击查看图片

半导体

本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子- 空穴对,空穴导电并不是电子运动,但是它的运动可以将其等效为载流子。空穴导电时等电量的电子会沿其反方向运动。它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子- 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子- 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

我们在 ExtremeTech 上讨论了很多半导体工艺节点,但是从技术上讲,我们并不经常提及什么是半导体工艺节点 。 随着 Intel 的 10nm 节点进入生产阶段,对于半导体工艺节点的困惑越来越多了,而且对于台积电和三星的技术是不是优于英特尔(以及如果拥有的优势,他们拥有多少优势),也打上了问号。

半导体工艺节点通常以数字命名,后跟纳米的缩写:32nm,22nm,14nm等。CPU 的任何功能与节点名称之间没有固定的客观联系。半导体工艺节点的命名方式也并非总是如此,在大约 1960s-1990s ,节点是根据门的长度来命名的。IEEE 的这张图显示了这种关系:

长期以来,栅极长度(晶体管栅极的长度)和半间距(芯片上两个相同特征,如栅级,之间的距离的一半)与过程节点名称相匹配,但最后一次是 1997年 。半间距又连续几代与节点名匹配,但在实际意义上两者并没有什么关系。实际上,特征尺寸和芯片实际上的样子匹配,已经是很长很长时间之前的事情了。

如果我们达到几何比例缩放要求以使节点名称和实际特征尺寸保持同步,那么六年前我们就该将生产线降至 1nm 以下(这怎么可能嘛)。我们用来表示每个新节点的数字只是代工厂为了宣传选取的数字。早在2010年,ITRS(国际半导体技术发展蓝图,稍后对此组织进行详细介绍)把在每个节点上应用的技术集称为“等效扩展”(而不是几何扩展)。当我们接近纳米级的极限时,宣传可能会开始使用埃而不是纳米,或者可能会使用小数点。当我开始在这个行业工作时,通常会看到记者提到微米而不是纳米的工艺节点,例如 0.18微米或 0.13微米,而不是 180nm 或 130nm。

半导体制造涉及大量的资本支出和大量的长期研究。从论文采用新技术到大规模商业化生产之间的平均时间间隔为10到15年。几十年前,半导体行业认识到,如果存在针对节点引入的通用路线图以及这些节点所针对的特征尺寸,这对每个电子工业的参与方都是有利的。这将允许生产线上的不同位置的厂商同时克服将新节点推向市场遇到的难题。多年来,ITRS(国际半导体技术路线图)一直在发布该行业的总体路线图。这些路线图长达15年之久,为半导体市场设定了总体目标。

ITRS于1998-2015年发布。从2013年至2014年,ITRS重组为ITRS 2.0,他们很快意识到传统的推进方法遇到了理论创新的瓶颈,新组织的任务目标是为大学、财团和行业研究人员提供“未来的主要参考方向,以激发技术各个领域的创新”,这个目标也要求新组织大幅扩展其覆盖范围和覆盖范围。ITRS就此宣布退休了,成立了一个新的组织,称为IRDS(国际设备和系统路线图),其研究的范围大得多,涉及更广泛的技术。

范围和重点的转移反映了整个代工行业正在发生的事情。我们停止将栅极长度或半间距与节点大小绑定的原因是,它们要么停止缩小,要么缩小的速率减慢。作为替代方案,公司已经集成了各种新技术和制造方法,从而继续进行节点缩放。在40 / 45nm,GF和TSMC等公司推出了浸没式光刻技术。在32nm处引入了双图案。后栅极制造是28nm的功能。FinFET是由Intel在22nm处引入的,而其他公司则是在14 / 16nm节点处引入的。

公司有时会在不同的时间推出功能。AMD和台积电推出了40 / 45nm浸没式光刻技术,但英特尔等到32nm才使用该技术,并选择首先推出双图案。GlobalFoundries和台积电开始在32 / 28nm使用更多的双图案。台积电在28nm处使用后栅极构造,而三星和GF使用先栅极技术。但是,随着进展变得越来越慢,我们已经看到公司更加依赖于营销,拥有更多定义的“节点”。像三星这样的公司,没有像以前一样瀑布式下降节点名字(90、65、45),而是给不同的工艺节点起了数字部分相同的名字:

我认为您可以吐槽该产品名称不明不白,因为除非您有清晰的图表,否则很难分辨哪些流程节点是早期节点的演变变体。

尽管节点名称不 依赖 于任何特征尺寸,并且某些特征尺寸已停止缩小,但半导体制造商仍在寻找改善关键指标的方法。这是真正的技术进步。但是,由于现在很难获得性能上的优势,并且更小的节点需要更长的开发时间,因此公司正在尝试更多所谓的改进实验。例如,三星正在准备比以前更多的节点名称。那是某种营销策略,而不是他们真的能做出来多么超前的改进。

因为英特尔10纳米制程的制造参数非常接近台积电和三星用于7纳米制程的值。下面的图表来自WikiChip,但它结合了英特尔10nm节点的已知功能尺寸和台积电和三星7nm节点的已知功能尺寸。如您所见,它们非常相似:

delta 14nm / delta 10nm列显示了每个公司从其上一个节点开始将特定功能缩小的程度。英特尔和三星的最小金属间距比台积电更严格,但是台积电的高密度SRAM单元比英特尔小,这可能反映了台湾代工厂的不同客户的需求。同时,三星的单元甚至比台积电的单元还要小。总体而言,英特尔的10nm工艺达到了许多关键指标,台积电和三星都将其称为7nm。

由于特定的设计目标,单个芯片可能仍具有偏离这些尺寸的功能。制造商提供的这些数字是给定节点上的典型预期实现方式,不一定与任何特定芯片完全匹配。

有人质疑英特尔的10nm +工艺(用于Ice Lake)在多大程度上达到了这些宣传的指标(我相信这些数字是针对Cannon Lake发布的)。的确,英特尔10纳米节点的预期规格可能会略有变化,但14纳米+也是14纳米的调整,10nm+肯定比14nm工艺有非常大的改进。英特尔已经表示,一定会把10nm工艺节点的晶体管密度相对14nm增加2.7倍作为目标,因此我们将推迟任何有关10nm +可能略有不同的猜测。

理解新流程节点的含义的最佳方法是将其视为总括性术语。当一家代工厂商谈论推出一个新的流程节点时,他们所说的其实是:

“我们创建了具有更小特征和更严格公差的新制造工艺。为了实现这一目标,我们集成了新的制造技术。我们将这组新的制造技术称为流程节点,因为我们想要一个总括的术语,向大众传递我们改进了某些具体的工艺参数。”

关于该主题还有其他问题吗?将它们放到下面,我会回答他们。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7129668.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存