半导体主要具有三大特性:
1.热敏特性
半导体的电阻率随温度变化会发生明显地改变。例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。温度的细微变化,能从半导体电阻率的明显变化上反映出来。利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。
值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。
2.光敏特性
半导体的电阻率对光的变化十分敏感。有光照时、电阻率很小;无光照时,电阻率很大。例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时。电阻一下子降到几十千欧姆,电阻值改变了上千倍。利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等。广泛应用在自动控制和无线电技术中。
3.掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。例如。在纯硅中掺人。百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm,也就是硅的导电能为提高了50多万倍。人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。
扩展资料
1、半导体的组成部分
半导体的主要由硅(Si)或锗(Ge)等材料制成,半导体的导电性能是由其原子结构决定的。
2、半导体分类
(1)半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括第Ⅲ和第Ⅴ族化合物(砷化镓、磷化镓等)、第Ⅱ和第Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
(2)按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。
此外还有以应用领域、设计方法等进行分类,虽然不常用,但还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。
3、半导体的作用与价值
目前广泛应用的半导体材料有锗、硅、硒、砷化镓、磷化镓、锑化铟等。其中以锗、硅材料的生产技术较成熟,用的也较多。
用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有:
(1)集成电路 它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。
(2)微波器件 半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。
(3)光电子器件 半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。
去年6月1日,日本半导体最后的巨头东芝为了弥补其核电业务及经营不善带来的巨额亏损,出售旗下半导体公司(TMC)给贝恩资本牵头的日美韩财团组建的收购公司Pangea。日媒称该事件为,日本半导体最后要塞的失守。
而日本的半导体产业起源于美国的技术转移。
1947年,美国AT&T贝尔研究所发明了点接触晶体管。
1951年,贝尔研究所发明了结接触晶体管,并实现成功实现商业试用。
1953年,索尼创始人之一盛田绍夫从西方电器公司买到晶体管专利技术。
1955年,索尼研制出全球第一台晶体管收音机。
1959年,日本晶体管销量达到世界第一。
1968年,在政府的产业育成政策下,日立、富士通、NEC开始研制超高性能计算机。
从40晶体管诞生到60年代后半期,日本主要还是接受美国的技术转移,负责量产民用商品输出到美国,而美国则将电子产业的重心转移到军用领域。
60年代后半期,日本半导体技术者开始活跃在半导体国际会议上,已经实现了技术积累的日本公司开始尝试独自开发。而在70年代初,IBM宣布在大型计算机中使用半导体存储器取代磁芯,半导体中重要的DRAM芯片成为潜力巨大的市场,美国也开始拒绝向日本提供IC集成电路,并且强迫日本实现IC输入的完全自由化。此时,日本政府不仅旧有的半导体量产面临危机,而且IBM的新时代高性能计算机的开发也让日本政府恐惧。这让日本一蹶不振,一直在原地不动。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)