F-P型谐振腔是什么

F-P型谐振腔是什么,第1张

F-P谐振腔,全名是法布里-珀罗谐振腔(Fabry–Pérot cavity),也即平面平行腔(plane-parallel cavity),是光学谐振腔的一种,由两个平行平面反射镜组成,常应用于半导体激光器(LD) 。

这是激光技术发展历史上最早提出的光学谐振腔,是法布里-珀罗干涉仪(Fabry–Pérot interferometer)的基础。

F-P腔是一种无源光学谐振腔,最早产生于1897年,由法国人Alfred Fabry和Charles Periot共同发明,目前已被广泛应用于光通信、激光以及光谱领域中控制或测量光波长。

扩展资料:

光学谐振腔的种类

按组成谐振腔的两块反射镜的形状及它们的相对位置,可将光学谐振腔分为:平行平面腔,平凹腔,对称凹面腔,凸面腔等。

平凹腔中如果凹面镜的焦点正好落在平面镜上,则称为半共焦腔;如果凹面镜的球心落在平面镜上,便构成半共心腔。

对称凹面腔中两块反射球面镜的曲率半径相同。如果反射镜焦点都位于腔的中点,便称为对称共焦腔。如果两球面镜的球心在腔的中心,为共心腔。

参考资料来源:百度百科——F-P谐振腔

半导体激光器的结构和工作原理分析

现以砷化镓(GaAs)激光器为例,介绍注入式同质结激光器的工作原理。

1.注入式同质结激光器的振荡原理。由于半导体材料本身具有特殊晶体结构和电子结构,故形成激光的机理有其特殊性。

(1)半导体的能带结构。半导体材料多是晶体结构。当大量原子规则而紧密地结合成晶体时,晶体中那些价电子都处在晶体能带上。价电子所处的能带称价带(对应较低能量)。与价带最近的高能带称导带,能带之间的空域称为禁带。当加外电场时,价带中电子跃迁到导带中去,在导带中可以自由运动而起导电作用。同时,价带中失掉一个电子,则相当于出现一个带正电的空穴,这种空穴在外电场的作用下,也能起导电作用。因此,价带中空穴和导带中的电子都有导电作用,统称为载流子。

(2)掺杂半导体与p-n结。没有杂质的纯净半导体,称为本征半导体。如果在本征半导体中掺入杂质原子,则在导带之下和价带之上形成了杂质能级,分别称为施主能级和受主能级。

有施主能级的半导体称为n型半导体有受主能级的半导体称这p型半导体。在常温下,热能使n型半导体的大部分施主原子被离化,其中电子被激发到导带上,成为自由电子。而p型半导体的大部分受主原子则俘获了价带中的电子,在价带中形成空穴。因此,n型半导体主要由导带中的电子导电p型半导体主要由价带中的空穴导电。

半导体激光器中所用半导体材料,掺杂浓度较大,n型杂质原子数一般为(2-5)× 1018cm-1p型为(1-3)×1019cm-1。

在一块半导体材料中,从p型区到n型区突然变化的区域称为p-n结。其交界面处将形成一空间电荷区。n型半导体带中电子要向p区扩散,而p型半导体价带中的空穴要向n区扩散。这样一来,结构附近的n型区由于是施主而带正电,结区附近的p型区由于是受主而带负电。在交界面处形成一个由n区指向p区的电场,称为自建电场。此电场会阻止电子和空穴的继续扩散。

(3)p-n结电注入激发机理。若在形成了p-n结的半导体材料上加上正向偏压,p区接正极,n区接负极。显然,正向电压的电场与p-n结的自建电场方向相反,它削弱了自建电场对晶体中电子扩散运动的阻碍作用,使n区中的自由电子在正向电压的作用下,又源源不断地通过p-n结向p区扩散,在结区内同时存在着大量导带中的电子和价带中的空穴时,它们将在注入区产生复合,当导带中的电子跃迁到价带时,多余的能量就以光的形式发射出来。这就是半导体场致发光的机理,这种自发复合的发光称为自发辐射。

要使p-n结产生激光,必须在结构内形成粒子反转分布状态,需使用重掺杂的半导体材料,要求注入p-n结的电流足够大(如30000A/cm2)。这样在p-n结的局部区域内,就能形成导带中的电子多于价带中空穴数的反转分布状态,从而产生受激复合辐射而发出激光。

2.半导体激光器结构。其外形及大小与小功率半导体三极管差不多,仅在外壳上多一个激光输出窗口。夹着结区的p区与n区做成层状,结区厚为几十微米,面积约小于1mm2。

半导体激光器的光学谐振腔是利用与p-n结平面相垂直的自然解理面(110面)构成,它有35的反射率,已足以引起激光振荡。若需增加反射率可在晶面上镀一层二氧化硅,再镀一层金属银膜,可获得95%以上的反射率。

一旦半导体激光器上加上正向偏压时,在结区就发生粒子数反转而进行复合。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7190352.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-02
下一篇 2023-04-02

发表评论

登录后才能评论

评论列表(0条)

保存