半导体的掺杂是为了提高半导体器件的电学性能,半导体的很多电学特性都与掺杂的杂质浓度有关。
纯正的半导体是靠本征激发来产生载流子导电的,但是仅仅依靠本证激发的话产生的载流子数量很少,而且容易受到外间因素如温度等的影响。掺入相应的三价或是五价元素则可以在本征激发外产生其他的载流子。
半导体的常用掺杂技术主要有两种,即高温(热)扩散和离子注入。掺入的杂质主要有两类:第一类是提供载流子的受主杂质或施主杂质(如Si中的B、P、As);第二类是产生复合中心的重金属杂质(如Si中的Au)。
扩展资料:
掺杂之后的半导体能带会有所改变。依照掺杂物的不同,本征半导体的能隙之间会出现不同的能阶。施体原子会在靠近导带的地方产生一个新的能阶,而受体原子则是在靠近价带的地方产生新的能阶。假设掺杂硼原子进入硅,则因为硼的能阶到硅的价带之间仅有0.045电子伏特,远小于硅本身的能隙1.12电子伏特,所以在室温下就可以使掺杂到硅里的硼原子完全解离化。
掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n结的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n结后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的导带或价带都会被弯曲以配合界面处的能带差异。
参考资料来源:百度百科——半导体掺杂技术
施主和受主杂质可以提供载流子,增大电导率;非施主和受主杂质往往会产生复合中心,减短非平衡载流子寿命;缺陷一般是产生复合中心。各种杂质和缺陷都对载流子都有散射作用,使迁移率降低,降低电导率。
主要影响是自由电子和空穴数量的精确控制。简单说,杂质越多,说明物理材料中的自由电子和空穴精确控制就越差,差可以导致物理指标下降:杂散电流随环境温度增加而增加;PN结的耐压程度和温度系数变劣。
扩展资料:
掺入半导体中的一类杂质或缺陷,它能接受半导体中的价带电子,产生同数量的空穴,从而改变半导体的导电性能.例如,掺入半导体锗和硅中的三价元素硼、镓等原子都是受主.如果某一半导体的杂质总量中,受主的数量占多数,则这半导体是P型半导体,这种杂质或缺陷叫做受主。
半导体中掺入微量杂质时,杂质原子附近的周期势场受到干扰并形成附加的束缚状态,在禁带中产生附加的杂质能级。能提供电子载流子的杂质称为施主(Donor)杂质,相应能级称为施主能级,位于禁带上方靠近导带底附近。
参考资料来源:百度百科-杂质半导体
在本征半导体中掺入微量杂质形成杂质半导体后,其导电性能将发生显着变化。按掺入杂质的不同,杂质半导体可分为N型半导体和P型半导体。
N型半导体
如果在本征半导体硅(或锗)中掺入微量5价杂质元素,如磷、锑、砷等,由于杂质原子的最外层有5个价电子,当其中的4个与硅原子形成共价键时,就会有多余的1个价电子。这个电子只受自身原子核的吸引,不受共价键的束缚,室温下就能变成自由电子,如图2.2(a)所示。磷(或锑、砷)原子失去一个电子后,成为不能移动的正离子。掺入的杂质元素越多,自由电子的浓度就越高,数量就越多。并且在这种杂质半导体中,电子浓度远远大于空穴浓度。因此,电子称为多数载流子(简称多子),空穴称为少数载流子(简称少子)。在外电场的作用下,这种杂质半导体的电流主要是电子电流。由于电子带负电荷,因此这种以电子导电为主的半导体称为N型半导体。
P型半导体
如果在本征半导体硅(或锗)中掺入微量3价元素,如硼、镓、铟等,由于杂质原子的最外层有3个价电子,当它和周围的硅原子形成共价键时,将缺少1个价电子而出现1个空穴,附近的共价键中的电子很容易来填补。如图2.2(b)所示。硼(或镓、铟)原子获得1个价电子后,成为不能移动的负离子,同时产生1个空穴。所以,掺入了3价元素的杂质半导体,空穴是多数载流子,电子是少数载流子。在外电场的作用下,其电流主要是空穴电流。这种以空穴导电为主的半导体称为P型半导体。
综上所述,在本征半导体中掺入5价元素可以得到N型半导体,掺入3价元素可以得到P型半导体。在N型半导体中,由于自由电子数目大大增加,增加了与空穴复合的机会,因此空穴数目便减少了同样,在P型半导体中,空穴数目大大增加,自由电子数目较掺杂前减少了。由此可知,多数载流子的浓度取决于掺杂浓度而少数载流子的浓度受温度影响很大。
本征半导体中电子和空穴的浓度相等,而掺杂半导体中电子和空穴的浓度差异相当大。在动态平衡条件下,N型半导体和P型半导体中少数载流子的浓度满足下列关系:
pi·ni=pp·np=pn·nn
式中,pi,ni,pp,np,pn,nn分别为本征半导体,P型半导体和N型半导体中的空穴浓度和电子浓度。
应当注意的是,掺杂后对于P型半导体和N型半导体而言,尽管都有一种载流子是多数载流子,一种载流子是少数载流子,但整个半导体中由于正负电荷数是相等的,它们的作用相互抵消,因此保持电中性。
希望能帮到您!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)