自引进IC封装开始,台湾半导体产业已发展40余年,近年来总产值已近20,000亿元新台币,在全世界占有一席之地。半导体产业竞争力来自於成本、良率及交货时间,其中良率更是一家公司有竞争力之所在。近年来自动化生产及物联网(技术发展,使得所有半导体制程相关的数据得以蒐集与保存,这些数据包含产品数据、机台数据、量测数据、缺陷机数据、晶圆接受度测试数据及晶圆测试数据,如何有效的使用这些大数据数据一直是半导体产业重要的课题之一。除了提升产品良率之外,产品/制造流程缺陷追踪、供应计画、提升能源效率…等都可以利用大数据分析提升公司竞争力。
处理这些数据主要可分成三个步骤:数据前处理、数据分析、验证与评估。在数据前处理时必须先修正数据错误,常见的数据错误有以下两种:
1.数据出现异常值。透过盒须图可轻易的分析出异常值,通常发生的在设备工程师在调整机台的时候或是由其他外在因素造成,因此这样的值通常直接删除。
2.数据出现遗漏值。因侦测设备的限制,有时数据会有不完整的情况,处理这样的状况可透过补值的方式(内插法、平均法等)回填可能的数据或直接删除该笔数据。
因每种数据的性质与内容不同,为有效使用这些数据,将数据库整合为必要的步骤。如何整合这些数据库首先需考量实际问题需求,再来考量数据库数据的型态,例如机台数据为连续型数据、缺陷机数据为离散型数据,因应不同的数据型态必须选择不同的方式去做合并。
在数据分析处理上,常见的方式可分成以下几种方式:
1.利用数据分群演算法,例如K-means演算法、阶层式分群演算法将原始数据分群。
2.将分群好的数据透过决策树找出造成问题发生的可能因子,或透过机器学习演算法,例如SVM建立模型,预测问题是否会发生,藉此实作出预警系统。
数据分析完之後必须评估结果是否符合现实以避免过适现象。在此步骤往往会发生分析结果和过往经验不一致的情况,除了花许多时间与工程师沟通确认之外,还需找不同的数据集交互验证,已确保数据分析方式是可行的。
在处理大量的数据时面临到许多的挑战,例如:传统的分析工具与方法通常适用在小规模的数据上,当数据量大且复杂时往往失去其效用、分析数据需耗费大量的计算时间,如何快速的处理大量数据是一项大的挑战。近年来已有一些工具可解决以上的问题,例如:MLlib即可支援一些机器学习的套件在Spark平台、RHadoop及SparkR套件可支援R的分析工具在Hadoop及Spark平台上。除了在分析数据时面临的挑战之外,TATA Consultancy Services(TCS)顾问公司在2013年从其他面向提出在处理大数据数据时面临的许多挑战,举例来说:数据工程师需取得部门经理的高度信任、对於不同的商业决策需决定该使用哪些数据、利用大数据分析帮忙部门经理做决策…等,以上的问题待管理相关的人员来解决。
对於半导体产业来说,透过大数据数据分析历史数据,挖掘其中有用的资讯以提升公司竞争力是非常有效的一种方式。科技部与台积电在2014年下半年即举办相关的比赛,希冀发掘半导体相关数据的各种有用资讯。相信往後会有越来越多人力与资源投入这领域,让半导体产业迈入新的世代。
以上是小编为大家分享的关于台湾是如何应用大数据分析提高半导体竞争力的相关内容,更多信息可以关注环球青藤分享更多干货
工业大数据应用在哪些方面?1.加速产品创新
客户与工业企业之间的交互和交易行为将产生大量数据,挖掘和分析这些客户动态数据,能够帮助客户参与到产品的需求分析和产品设计等创新活动中,为产品创新作出贡献。
2.产品故障诊断与预测
这可以被用于产品售后服务与产品改进。无所不在的传感器、互联网技术的引入使得产品故障实时诊断变为现实,大数据应用、建模与仿真技术则使得预测动态性成为可能。
3.生产线的大数据应用
现代化工业制造生产线安装有数以千计的小型传感器,来探测温度、压力、热能、振动和噪声。因为每隔几秒就收集一次数据,利用这些数据可以实现很多形式的分析,包括设备诊断、用电量分析、能耗分析、质量事故分析(包括违反生产规定、零部件故障)等。首先,在生产工艺改进方面,在生产过程中使用这些大数据,就能分析整个生产流程,了解每个环节是如何执行的。
4.工业供应链分析和优化
当前,大数据分析已经是很多电子商务企业提升供应链竞争力的重要手段。例如,电子商务企业京东商城,通过大数据提前分析和预测各地商品需求量,从而提高配送和仓储的效能,保证了次日货到的客户体验。RFID等产品电子标识技术、物联网技术以及移动互联网技术能帮助工业企业获得完整的产品供应链的大数据,利用这些数据进行分析,将带来仓储、配送、销售效率的大幅提升和成本的大幅下降。
5.产品销售预测与需求管理
通过大数据来分析当前需求变化和组合形式。大数据是一个很好的销售分析工具,通过历史数据的多维度组合,可以看出区域性需求占比和变化、产品品类的市场受欢迎程度以及最常见的组合形式、消费者的层次等,以此来调整产品策略和铺货策略。
6.生产计划与排程
制造业面对多品种小批量的生产模式,数据的精细化自动及时方便的采集(MES/DCS)及多变性导致数据剧烈增大,再加上十几年的信息化的历史数据,对于需要快速响应的APS来说,是一个巨大的挑战。
大数据可以给予我们更详细的数据信息,发现历史预测与实际的偏差概率,考虑产能约束、人员技能约束、物料可用约束、工装模具约束,通过智能的优化算法,制定预计划排产,并监控计划与现场实际的偏差,动态的调整计划排产。
帮我们规避“画像”的缺陷,直接将群体特征直接强加给个体(工作中心数据直接改变为具体一个设备、人员、模具等数据)。通过数据的关联分析并监控它,我们就能计划未来。虽然,大数据略有瑕疵,只要得到合理的应用,大数据会变成我们强大的武器。当年,福特问大数据的客户需求是什么?而回答是“一匹更快的马”,而不是现在已经普及的汽车。所以,在大数据的世界里,创意、直觉、冒险精神和知识野心尤为重要。
7.产品质量管理与分析
传统的制造业正面临着大数据的冲击,在产品研发、工艺设计、质量管理、生产运营等各方面都迫切期待着有创新方法的诞生,来应对工业背景下的大数据挑战。例如在半导体行业,芯片在生产过程中会经历许多次掺杂、增层、光刻和热处理等复杂的工艺制程,每一步都必须达到极其苛刻的物理特性要求,高度自动化的设备在加工产品的同时,也同步生成了庞大的检测结果。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)