不同点:
一、本质不同。
有机半导体是有机合成的,无机半导体是无机合成的。
二、成膜技术不同。
有机半导体的成膜技术比无机半导体更多、更新。
三、性能不同。
有机半导体比无机半导体呈现出更好的柔韧性,而且质量更轻。有机场效应器件也比无机的制作工艺也更为简单。
相同点:运用范围相同,都是主要运用在收音机、电视机和测温上。
扩展资料
无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物。
但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。
有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。
这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。
参考资料:百度百科-半导体
帮你找了几篇类似综述一样的文章,要的话联系我吧(点我可见)。【篇名】有机半导体研究进展 CAJ原文下载PDF原文下载
【作者】 袁仁宽. 沈今楷. 孔凡.
【刊名】固体电子学研究与进展2003年01期编辑部Email
《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊
【机构】 南京大学物理系. 南京大学物理系 210093 .
【关键词】有机半导体. 有机发光二极管. 聚合物半导体. 有机晶体. 孤子.
【聚类检索】 同类文献 引用文献 被引用文献
【摘要】 1977年人们发现通过掺杂可以使聚乙炔膜的电导率提高 1 2个量级 ,由绝缘体变成导体 ,从此掀起了有机半导体的研究热潮。其研究工作包括有机高分子材料、有机小分子材料和有机分子晶体材料的电学、光学等性质。有机半导体中的载流子除了电子和空穴外 ,还有孤子、极化子等。人们已经获得低温迁移率高达 1 0 5cm2 /V.s的高质量有机半导体晶体 ,在其中观察到量子霍尔效应 ,并用其制成有机半导体激光器。如今有机半导体彩色显示屏已进入实用阶段。
【光盘号】 INFO0306
【篇名】有机半导体:无限的可能 CAJ原文下载PDF原文下载
【刊名】现代制造2005年24期编辑部Email
CJFD收录期刊
【聚类检索】 同类文献 引用文献 被引用文献
【摘要】 有机半导体能够支持一些全新的电子设备,从计算机制衣到可折叠显示器等,都具有很大的发展潜力。有机半导体预示着新一代显示器,标签和油墨的到来。
【光盘号】 SCTC0512S2
【篇名】有机半导体复合光导材料与器件的研究与发展 CAJ原文下载PDF原文下载
【作者】 张翔宇. 汪茫. 陈红征. 阙端麟.
【刊名】自然科学进展1999年07期编辑部Email
《中文核心期刊要目总览》来源期刊 “中国期刊方阵”入选期刊 ASPT来源刊 CJFD收录期刊
【机构】 浙江大学高分子科学与材料研究所硅材料国家重点实验室. 浙江大学高分子科学与材料研究所硅材料国家重点实验室 杭州 310027 .
【关键词】有机半导体. 有机光导体. 复合材料.
【聚类检索】 同类文献 引用文献 被引用文献
【摘要】 通过不同结构、不同组成、不同功能的光导材料的复合,可以得到功能的协同增强、优化以及互补效应。采用分子内复合和分子间复合的方法,可以制备在可见光和近红外区域均有很高光敏性的新型有机光导材料。同时,研制使材料与器件交叉渗透,结合为一体的单层有机光导体,可大大地降低生产成本。
【光盘号】 SCTA99S5
【篇名】值得关注的有机光伏电池材料 CAJ原文下载PDF原文下载
【作者】 孙景志. 汪茫. 周雪琴. 王植源.
【刊名】材料导报2002年02期编辑部Email
ASPT来源刊 CJFD收录期刊
【机构】 浙江大学材料与化工学院高分子系. 加拿大Carleton大学化学系 浙江大学硅材料国家重点实验室. 杭州 310027 .
【关键词】有机半导体. 光电池. 复合材料. 聚集态结构. 激发态.
【聚类检索】 同类文献 引用文献 被引用文献
【摘要】 评述了近十年来有机光电池材料研究的最新进展,强调了材料复合对设计有机光伏电池的重要性,指出了有机半导体材料的分子聚集态结构与材料凝聚态结构的调控在改善器件性能上发挥的决定性作用,揭示了激发态过程与激发态性质的研究在提高光电转换效率上的意义,分析了有机光电池材料的发展前景。
【光盘号】 SCTB02S1
电阻率介于金属和绝缘体之间并有负的电阻温度系数的物质。半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。
半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。
锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。
半导体(东北方言):意指半导体收音机,因收音机中的晶体管由半导体材料制成而得名。
本征半导体
不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。半导体五大特性∶电阻率特性,导电特性,光电特性,负的电阻率温度特性,整流特性。
★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。
★在光照和热辐射条件下,其导电性有明显的变化。
晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。
共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。
自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。
空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。
电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。
空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。
本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。
载流子:运载电荷的粒子称为载流子。
导体电的特点:导体导电只有一种载流子,即自由电子导电。
本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。
本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。
复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。
动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。
载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。
结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。
杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。
N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。
多数载流子:N型半导体中,自由电子的浓度大于空穴的浓度,称为多数载流子,简称多子。
少数载流子:N型半导体中,空穴为少数载流子,简称少子。
施子原子:杂质原子可以提供电子,称施子原子。
N型半导体的导电特性:它是靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。
P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。
多子:P型半导体中,多子为空穴。
少子:P型半导体中,少子为电子。
受主原子:杂质原子中的空位吸收电子,称受主原子。
P型半导体的导电特性:掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。
结论:
多子的浓度决定于杂质浓度。
少子的浓度决定于温度。
PN结的形成:将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。
PN结的特点:具有单向导电性。
扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。
空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。
电场形成:空间电荷区形成内电场。
空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。
漂移运动:在电场力作用下,载流子的运动称漂移运动。
PN结的形成过程:如图所示,将P型半导体与N型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。
电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。
耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。
PN结的单向导电性
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)