半导体分为哪些类型?

半导体分为哪些类型?,第1张

一、N型半导体

N型半导体也称为电子型半导体,即自由电子浓度远大于空穴浓度的杂质半导体。

形成原理

掺杂和缺陷均可造成导带中电子浓度的增高. 对于锗、硅类半导体材料,掺杂Ⅴ族元素,当杂质原子以替位方式取代晶格中的锗、硅原子时,可提供除满足共价键配位以外的一个多余电子,这就形成了半导体中导带电子浓度的增加,该类杂质原子称为施主. Ⅲ-Ⅴ族化合物半导体的施主往往采用Ⅳ或Ⅵ族元素. 某些氧化物半导体,其化学配比往往呈现缺氧,这些氧空位能表现出施主的作用,因而该类氧化物通常呈电子导电性,即是N型半导体,真空加热,能进一步加强缺氧的程度。

二、P型半导体

P型半导体一般指空穴型半导体,是以带正电的空穴导电为主的半导体。

形成

在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。空穴主要由杂质原子提供,自由电子由热激发形成。

特点:

(一)、N型半导体

由于N型半导体中正电荷量与负电荷量相等,故N型半导体呈电中性。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

(二)、P型半导体

掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。

P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

扩展资料

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

参考资料

半导体-百度百科

1.晶体管的结构晶体管内部由两pn结构成,其三个电极分别为集电极(用字母c或c表示),基极(用字母b或b表示)和发射极(用字母e或e表示)。根据结构不同,晶体管可分为pnp型和npn型两类。

2.三极管各个电极的作用及电流分配晶体管三个电极的电极的作用如下:发射极(e极)用来发射电子;基极(b极)用来控制e极发射电子的数量;集电极(c极)用业收集电子。晶体管的发射极电流ie与基极电流ib、集电极电流ic之间的关系如下:ie=ib+ic

3.晶体管的工作条件晶体管属于电流控制型半导体器件,其放大特性主要是指电流放大能力。所谓放大,是指当晶体管的基极电流发生变化时,其集电极电流将发生更大的变化或在晶体管具备了工作条件后,若从基极加入一个较小的信号,则其集电极将会输出一个较大的信号。晶体管的基本工作条件是发射结(b、e极之间)要加上较低的正向电压(即正向偏置电压),集电结(b、c极之间)要加上较高的反向电压(即反向偏置电压)。晶体管各极所加电压的极性见图5-5。晶体管发射结的正向偏置电压约等于pn结电压,即硅管为0.6~0.7v,锗管为0.2~0.3v。集电结的反向偏置电压视具体型号而定。

4.晶体管的工作状态晶体管有截止、导通和饱和三种状态。在晶体管不具备工作条件时,它处截止状态,内阻很大,各极电流几乎为0。当晶体管的发射结加下合适的正向偏置电压、集电结加上反向偏置电压时,晶体管导通,其内阻变小,各电极均有工作电流产生(ie=ib+ic)。适当增大其发射结的正向偏置电压、使基极电流ib增大时,集电极电流ic和发射极电流ie也会随之增大。当晶体管发射结的正向偏置电压增大至一定值(硅管等于或略高于0.7v,锗管等于或略高于0.3v0时,晶体管将从导通放大状态进入饱和状态,此时集电极电流ic将处于较大的恒定状态,且已不受基极电流ib控制。晶体管的导通内阻很小(相当于开关被接通),集电极与发射极之间的电压低于发射结电压,集电结也由反偏状态变为正偏状态。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7434471.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存