撕开巨头垄断!国产柔性屏产业走向世界,柔宇折叠出怎样的未来?

撕开巨头垄断!国产柔性屏产业走向世界,柔宇折叠出怎样的未来?,第1张

基础科学是一个国家能否真正实现创新发展的关键,在火热的半导体领域,尤其是"一芯一屏"这两大核心产业,中国企业曾长期处于跟随地位,甚至在中美贸易摩擦之下备受压制。但不可否认的是,在技术迭代和市场规模的竞争中,中国企业正不断缩小与世界品牌的差距。以芯片为例,在美国步步紧逼之下,中国企业必将进行芯片全产业链的布局和研发,来应对日韩和欧美国家的垄断。而在可折叠柔性显示屏幕领域,柔宇正以“换道超车”的姿态实现ULT-NSSP技术突破,迅速完成技术成熟到全柔性显示屏大规模量产,迫切推动产业化进程的阶段。

迅速迭代,六年时间做到业内领先

2014年,柔宇团队成为国际上第一个发布全球最薄的柔性显示屏以及柔性传感器的企业,开启了中国制造柔性显示屏技术征服世界的第一步。2018年在北京,柔宇发布了全球首款真正的可折叠柔性屏智能手机——柔派(Flex Pai),作为一款具有革命性里程碑意义的手机,不仅推出时间领先三星近半年时间,也被英国BBC评价为“全球手机行业发展史上的标志性手机”。2020年9月22日,柔宇正式发布旗下第二代折叠屏手机FlexPai 2,这是一款弯折半径最低仅为1毫米,最高可承受180万次弯折,相比上代提升约9倍,整机折叠时可实现“无缝”贴合,厚度降低40%的划时代新机。

从柔宇 科技 成立到这条全柔性显示屏产线量产,历经了近6年时间。如果从柔宇 科技 创始人、董事长兼CEO刘自鸿决心走这条充满挑战的创业之路算起,周期更是长达12年。作为一家曾被业内误解的企业,在柔性显示和柔性传感两大核心技术的发展上,柔宇走出了一条与外资巨头与众不同的路线,不仅让中国制造在国际上占有一席之地,甚至有可能引领下个时代。

实际上,柔宇全柔性面板良品率在2019年就已经达到“竞争对手”传统OLED硬屏的水平;在同样投入的情况下,ULT-NSSP技术方案比其他厂商全柔性屏良率高出一个数量级。而且,柔宇的全柔性终端产品的换屏成本也是行业最低的。显然,柔宇全柔性屏的制造良率、成本控制已达到业界领先水平。

独辟蹊径,自主研发完成换道超车

在显示面板领域,日韩企业一直占据技术的主导地位,无论从供应链、原材料和关键制程设备,中国企业在面板领域都受限于上游企业,要突破以三星为代表的日韩企业说构筑的技术壁垒,在原有的技术路线上恐怕难以超越,这也是中国主流半导体企业的共识。对年轻的柔宇而言,要想撕开日韩企业的垄断,就必须“换道超车”。

在柔性显示技术领域,目前已经逐步形成两大阵营:一个是以三星、LG为主的低温多晶硅LTPS技术阵营;另一个阵营以柔宇为代表,使用自主研发的超低温非硅制程集成技术(ULT-NSSP)。这两个技术路线中,中国企业都颇有建树。以低温多晶硅LTPS技术为例,凭借成熟的技术和供应链,京东方将厚度降到了0.03毫米,直接挑战到三星的霸主地位。

而在超低温非硅制程集成技术(ULT-NSSP)领域,柔宇以更精简的工艺和极低的温度,找到了全柔性屏弯折的可靠性、高良率和低成本投入之间的平衡点。甚至还根据技术特征,自主研发了显示电路与显示驱动系统。凭借这套不同于传统工艺的独立全柔性显示技术体系,柔宇在全球第一个成功实现了全柔性屏大规模量产出货,而今已剑指产业化。

除了超低温非硅制程集成技术(ULT-NSSP)路线,智能力学仿真模型也是柔宇的技术亮点。在研发中,能够快速计算不同材料、层叠方式可达到的柔性性能和稳定性、可靠性,再通过实验对比验证,对材料、层叠方式参数进行矫正,形成材料力学参数数据,从而极大地提高了研发效率,快速实现量产。

直至今日,柔宇使用的材料仍然是秘密。但从媒体的报道中可以发现,ULT-NSSP这项技术使面板在制作过程中有效减少了包含多晶硅脱氢、离子植入、活化等一系列制程,在温度上也较LTPS技术低200-300度左右。柔宇 科技 的创新技术有效减少了多道制程,省去了价格特别昂贵的RTA(快速高温退火),ELA(准分子激光退火)等设备投入,成功降低了投入成本。同时在良率方面,减少多道制程加上整体温度降低,也使ULT-NSSP面板生产良率较LTPS技术更高。值得一提的是,柔性屏折叠手机FlexPai正是采用了柔宇 科技 自己研究的柔性屏幕。

更重要的是,柔宇 科技 成为中国少数能完全掌握自主知识产权技术的企业,同时也具备国家“进口替代”和“一屏一芯”的战略意义。

赋能终端,加速推动产业化落地

市场调研机构Strategy Analytics预计,2019年全球可折叠柔性屏智能手机的出货量接近100万部,到2020年预计渗透率在1%以上,价格、产能、良率都是阻碍其普及的最大的原因。柔宇第三代蝉翼全柔性屏的量产以及ULT-NSSP技术路线的未来演进,无疑是推动市场普及的重要驱动力之一。

尤其在解决了被广为诟病的折痕、膜层断裂和显示失效等问题之后,剑指产业化的柔宇在ToC与ToB两大市场开始了快速量产与按需定制。

在ToC市场,最火热的莫过于全球首款折叠屏手机 FlexPai 的升级版——FlexPai 2,屏幕能够承受180万次弯折(一天翻折100次可使用约50年),通过独创的Royole 3STM全闭合线性转轴可实现完全无间隙闭合,而且展开后无折痕,达到类镜面平整度。更重要的是,FlexPai 2的8GB+256GB版仅售9988元,成为业内唯一售价在万元以下的5G折叠屏手机。FlexPai 2搭载了“为折叠屏手机而生”的waterOS 2.0 *** 作系统,该系统由柔宇 科技 的研发团队基于Android Q平台针对折叠屏手机特点自主开发,用户可以通过智能侧边栏设置,在侧曲屏上轻松实现应用的快捷切换。

柔宇 科技 创始人、董事长兼CEO刘自鸿展示了转轴内部复杂的结构,并表示3STM全闭合线性转轴中包含了高达200颗精密零部件和精密传动件,使用了包括钛合金、液态金属等在内多种顶级航空级金属材料。如此精密的设计为用户带来了更加顺滑的弯折手感,还能实现机身从0到180°任意角度自由“无级”悬停,可在平板模式、手机模式和帐篷模式三个模式中,帮助用户完成工作与生活的自由切换。

此外,柔性传感器技术领域也在快速实现终端商业化创新。比如近期上市销售的新一代智能手写本“柔记2”。其主要特点是:为业界目前最接近自然书写体验的智能笔记本,能够实现纸屏同步、手写文字即时转化电子文档等功能,同时还可以生成笔迹视频,让用户能随时回顾记录时的思路和逻辑,可以成为商务人士、教师和学生等人群的新型工作与创作工具。

在ToB市场,通过ULT-NSSP显示技术与 *** 作系统、软件和硬件相集成的“柔性+”平台,柔宇已经为六大行业的客户提供柔性+解决方案,包括智能移动终端、智能交通、文娱传媒、运动 时尚 、智能家居和办公教育。 产品涉及柔性传感器、柔性集成电路柔性 *** 作系统等。

在推动产业落地的过程中,柔宇目前已与全球超过500家各行业头部企业达成合作,共同打造柔性电子生态与产业创新应用。伴随更多终端的落地,柔性电子技术,可以解决目前用户诸多未满足的线上与交互需求,同时与合作伙伴共同拓展新的应用形态与服务边界,共同打造一个“柔性星球”,以柔性电子技术为世界带来巨大的产业变革推动力与应用创新想象力。

需要注意的是,围绕柔性屏市场,中韩企业的竞争很快将进入白热化的状态。好在,“换道超车”的柔宇完全掌握了核心自主技术,这让 中国在柔性显示领域不会再有被“卡脖子”的忧虑 ,而柔宇在技术创新与完成量产的每一次重要突破,都会让国际企业丧失技术垄断优势,也让中国企业拥有更多的产业话语权与产品溢价能力。

从第一款折叠屏手机发布至今已经有一年多的时间,在市面上已有的折叠屏手机,例如三星的Galaxy Fold、华为的Mate X、三星的Galaxy Z Flip、摩托罗拉的Moto Razr 2019、柔宇 科技 的FlexPai等产品。似乎能细数的型号不算少,不过售价的多少,消费者能不能买得到,就要另当别论了;对广大消费者而言,折叠屏产品似乎依旧遥远。

伴随折叠屏技术到来的,还有如今折叠屏手机脆弱的名声。 三星在柔性屏技术上投入已经超过10年,却在Galaxy Fold推出不久即面临屏幕显示不正常、膜层分离之类的问题。像华为Mate X这样的初代折叠屏产品,也是仅需轻轻用指甲在屏幕上抠一下,就能留下永久、不可修复的凹痕。即便三星二代折叠屏产品Galaxy Z Flip宣称改善了制程技术,从硬度测试来看,要在屏幕表面留下划痕其实相当轻而易举,折叠处甚至可能因为室温过低而碎裂。

像折叠屏这种脆弱属性更拉远了它与一般人的距离:当人们花两万元买了一部折叠屏手机,却需要在每天早晨手机闹铃响起、伸手去触碰屏幕时,还得先想一想是不是没剪指甲…这样的体验还是令人畏惧的。

首先还是需要划定探讨问题的范围:我们所说的柔性显示器或折叠屏究竟说的是什么?如果按照不同的显示面板技术来划分,众所周知,大方向上LCD和OLED都有自己的柔性发展路线——不过LCD柔性显示器相对特殊,也不是我们探讨手机折叠屏的主流技术。

从光电材料的角度来说,实际上不仅有LCD、OLED,电泳显示技术(electrophoretic,即E-Ink)、Gyricon也都能做到柔性化,多见于电子书、电子纸。市面上已经存在不少此类柔性显示产品,大多主打阅读、书写。但这也不是本文要探讨的主体。

如今在手机、移动设备上相对热门的柔性显示、折叠屏技术,特指柔性OLED面板。 本文在谈到折叠屏、柔性显示时,若无特别说明则特指OLED。讨论范围明确了,另外一个需要解决的问题是,柔性显示和折叠屏这两者是什么关系?

通常认为柔性显示技术的发展可以分成几个不同的阶段。第一阶段是固定曲率的柔性屏,即屏幕已经表现出曲面特性,但在最终产品形态上曲率是固定的、使用者不可控制的。这早在多年前就已经实现,以三星Galaxy系列手机为代表,华为近两年的旗舰机也都采用这类所谓“3D曲面屏”;很多显示器、电视产品也有此类设计。

第二阶段是可弯曲、可卷曲显示;第三阶段是可折叠显示;第四阶段为可任意折叠拉伸的全柔性显示。其中第二阶段的可弯曲、卷曲屏幕,在很多显示技术展会上都能看到,与第三阶段的重要差异在于“弯曲半径”明显不同。展会上常能见到的可弯曲屏幕,弯折半径是相对较大的(3~15mm)。而第三阶段的可折叠,就意味着极小的弯曲半径(0.5~3mm),技术层面的实现难度相比第二阶段要大很多。

就弯曲半径的角度来看,像三星Galaxy Fold这样的内折屏幕,在面板技术难度上要大于华为Mate X的 外折 屏幕方案,因为前者的弯曲半径是比后者明显更小的。不过就整个产品的角度来说,后者在铰链、结构设计方面有着更大的难度 ——这就不在本文的探讨范围内了。

由此可见,折叠屏是柔性显示的某个高级阶段,即便它并非最终形态。有关折叠屏在实际应用中的价值,这里不再赘述:至少就移动设备产品来说,折叠屏本质上是将一个屏幕更大的装置放进口袋,提升可携带性。

要明白折叠屏为何如此脆弱,首先需要理解这种屏幕的结构,以及具体的制造方法。如今手机、电视常见的OLED显示器为AMOLED面板,它在结构上包括了基板(substrate),阴极层(cathode)、有机分子层(包括发射层和导电层)、阳极层(anode)——这些整体构成了OLED frontplane;当然还需要TFT阵列层(薄膜晶体管)——这部分就是我们常说的backplane,本质上就是控制电路。

OLED的发光原理是电致发光(electro-phosphorescence)。在成为屏幕最终形态时,还需要对面板进行封装;传统手机AMOLED屏幕的上盖板即为密封玻璃。

要将这样的屏幕做成柔性形态,也就是要求每一层都是可弯曲、可折叠的。这里还没有涉及到触控面板、最外层保护材料之类的构成层级,它们也都需要可弯曲、可折叠。在大方向上,OLED frontplane和TFT backplane要做成可弯曲、可折叠形态,问题可能还不算特别大。但传统AMOLED显示屏的基板,以及上盖板,外加屏幕最外层的保护层都是玻璃材料。

常规玻璃可弯曲幅度很小,所以起码这几层的材料必须更换为柔性材料——对使用者而言最直观的就是外层不可能再用康宁的“大猩猩”(Goriall)玻璃。这也成为柔性显示器制造的第一大挑战──基板及盖板等的材料选择;由于OLED面板的制造流程关系,基板的材料选择实际上是十分受限的。

OLED面板制造至少需要经历蚀刻、溅射、蒸镀、切割等各种工序,材料需要耐受各种高温、腐蚀环境;在柔性面板制造过程中,还有UV紫外光剥离这样的流程,所以在材料的选择上就有最基本的要求。

这里可以单独谈一谈前文提到的TFT层,这层材料按照开关元件来分,现在相对流行的是LTPS(低温多晶硅)与IGZO (铟镓锌氧化物)。LTPS是柔性显示制造技术的主流,也是三星、京东方这些面板制造商开发柔性显示器时普遍采用的方案。LTPS相比传统方案(如a-Si)能够以更低的温度合成;不过即便是相对更低的温度,也可能需要达到600℃ ,或者更低。

柔宇 科技 在此采用的是一种名为ULT-NSSP (超低温非晶硅半导体制程)的技术。按照柔宇的说法,这种更低温的技术能够进一步降低成本——这似乎是柔宇在柔性显示器开发上不同于其他面板厂商的路线,具体效果怎样则是未知。无论如何,更低的温度对生产制造商而言总是更有价值的。

相对来说,柔性面板的制造流程与传统刚性OLED面板在前期阶段是比较类似的;前期一样需要玻璃支撑层(Carrier Glass Panel),只是最终有一个雷射剥离的过程,也就是将整个面板与玻璃支撑层分离。

在经过这么多道工序,如前文提到TFT制造时的高温,或相对高温,仍可屹立不倒的材料着实不多。 既然难以选择玻璃作为基板材料,却仍需确保透光性,外加可弯曲、可折叠属性,业界普遍采用的是PI (Polyimide,聚酰亚胺)——就是某种塑胶薄膜。当然其中还有一些技术细节这里无法细数,比如说玻璃基板可能需要采用PI镀膜方案、支撑层与PI基板之间需要一个剥离层(debonding layer)等。

实际上,超薄玻璃也是一种可一定程度弯曲的基板备选材料,玻璃毕竟具备更高的热稳定性和更好的透明性,但仍然受限于可弯曲的程度。而除了基板材料的选择,柔性面板还有一些需要考虑的问题。

例如导电层的ITO (铟锡氧化物或其他导电聚合物材料),一方面是要求更低温度的制程,另一方面在于ITO沉积在塑胶基板上,在拉伸应变方面可能导致很大的问题。再者TFT层也会受到可弯曲的影响,不仅外力可对其产生破坏,还在于其他层的热膨胀/收缩产生的力,以及它对湿度非常敏感。TFT层除了前文提到如今比较普遍的LTPS,OTFT (有机薄膜晶体管)对柔性面板而言也是某种备选方案。

像弯曲这样的动作,尤其当弯曲半径小到对折的程度──想象将一本书,沿着封面中间位置对折,对折后内圈的书页和外圈的书页的形变状态就有差异;所有书页为了适应这种弯曲对折,整本书不同位置一定会产生不同程度的形变。屏幕也是多层结构,当然屏幕面板没有书那么厚,但面板各层材料、制程都有差异,可形变、热膨胀特性等都有差异,这会为折叠动作产生不小的阻碍。

不难想像, 使用折叠屏手机时,折叠次数一多便很容易产生膜层分离、膜层滑移,甚至直接脆裂的问题——就像一本书对折后,不同书页的位置关系与平整状态下相比已经大不相同。于是折痕的问题便不难理解,即已产生的形变难以恢复——可能是表层材料无法恢复,也可能是其他层的材料。

在应对这些问题时,不同的面板制造商也有各自不同的解决方案。例如钝化结构加入缓冲层(BL)、无机防水层、粘合层(AIL)等。软性的缓冲层能够很大程度抵消弯折过程中产生的力,并且缩小弯曲半径。

在2020年3月份的柔宇发表会上,该公司提到建立智能力学模拟模型,形成材料力学参数资料库——不同材料层的各种参数,并对材料物理特性进行模拟,配合实验对比;通过这个模拟模型,就能找到更好的堆叠方案和材料选择。

不过在折叠屏手机使用过程中,除了折叠动作本身带来的破坏性,显示、触控故障很多时候又来自水、氧入侵面板内部,导致的严重问题。因为有机材料很容易发生氧化和水解。 所以对水氧的阻隔,对于柔性面板而言显得尤为重要。

这就涉及到封装技术了。如上文所述,传统OLED屏幕和柔性屏幕在封装要求上存在很大差异,前者的形态是固定的,而且应用于手机、电视这类终端产品后,面对的环境相对稳定;而后者由于柔性形态,封装需要做到多方位的防护,尤其对于水、氧的阻隔。

这是 目前市面上贩售的折叠屏手机,在使用过程中会出现屏幕部分显示区域失效的主要原因;至少就现状来看,柔性面板的封装技术似乎还没有那么成熟。

多层薄膜封装是比较常见的方案:多层薄膜通常会将无机层和有机层交替叠加,每个有机/无机层堆叠构成一对;超过三对多层薄膜,则水氧阻隔性可提升3~4个等级,WVTR (水蒸气透过量)也能相对应提升。有机层越薄,形成统一均匀的层才越有利;与此同时,这种有机/无机对不应超过5对。总的来说,实际表现还是要看材料和制程。

三星采用一种名为Barix的多层薄膜封装技术——这是美国Vitex公司商用的一种技术,如今在柔性薄膜封装上的应用还是比较广泛的。Barix多层薄膜能够很大程度满足一些规格需求。Barix镀膜的塑胶薄膜还可用作透明基板。

不过Barix技术也面临一些挑战,比如早前存在溅射AlOx薄膜的一些固有缺陷。这种技术还要求面板进出沉积室多达6次,而且成本也是比较高的。氧化物沉积是整个流程中极大限制了速度的一个步骤——当然针对这一问题的技术开发也一直在持续中。在柔性OLED制造过程中,封装成为占据整体成本很大比例的部分。

作者:黄烨锋


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7437273.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存