金属应变仪与半导体应变仪在工作原理上有何不同

金属应变仪与半导体应变仪在工作原理上有何不同,第1张

金属应变计的工作机理是所谓几何效应:当应变计拉长时,则其截面积减小,从而造成电阻增大。金属应变计主要是采用康铜之类的Cu-Ni合金来制作,往往采用弯曲的条状结构。这种应变计在较小的功耗下具有较大的灵敏度和较大的电阻。

半导体应变计的工作机理,除了几何效应以外,还有更为重要的所谓压阻效应(压电效应):当应变计拉长或者缩短时,半导体的载流子迁移率将发生变化,则导致电阻变化。半导体应变计主要是采用Si来制作,常常采用扩散或者离子注入式的结构,这与IC工艺兼容。这种应变计具有较好的温度稳定性、更好的线性度、更大的应变范围和使用灵活(如易于附着在弯曲表面上)。为了提高灵敏度和线性度,往往采用p型半导体(不用n型半导体);而且为了提高温度稳定性,多半采用高掺杂半导体(1020cm-3,但要折中考虑灵敏度)。

在应力作用下,应变计的长度L、面积A和电阻率ρ都将发生变化,这就造成电阻R发生变化,其电阻变化率为

ΔR/R = (ΔL/L)-(ΔA/A)+(Δρ/ρ) = e(1+2n+P)

式中e=ΔL/L是应变,n是Poisson比,P是表征压阻效应大小性能的参量(称为量规因子,P = (Δρ/ρ)/(ΔL/L) )。

根据半导体压阻效应,对于p型Si的[110]晶向的压阻应变计有Δρ/ρ ≈ σL Y eL,则得到:

P = (ΔR/R)/(ΔL/L) ≈ (Δρ/ρ)/e ≈ Y σL

其中的σL是纵向(沿着[110]晶向)的压阻系数,Y是杨氏d性模量。

在一定应变下,电阻的变化越大,应变计的灵敏度也就越高,因此可把单位应变时的DR/R定义为应变灵敏度G,即有:

G = (ΔR/R)/e = 1+2n+P

量规因子P越大,压阻应变计的灵敏度就越高。对于p型Si[110]压阻应变计,因为σL≈72×10-11Pa-1,Y≈170GPa,则得到P≈122;而对于金属的压阻应变计,则量规因子很小,只有P≈1.7。因此见到,半导体压阻应变计的灵敏度要远高于金属应变计。

压阻原理与应变片原理是不同的----★所谓压阻效应,是指当半导体受到应力作用时,由于载流子迁移率的变化,使其电阻率发生变化的现象。它是C.S史密斯在1954年对硅和锗的电阻率与应力变化特性测试中发现的。压阻效应的强弱可以用压阻系数π来表征。压阻系数π被定义为单位应力作用下电阻率的相对变化。压阻效应有各向异性特征,沿不同的方向施加应力和沿不同方向通过电流,其电阻率变化会不相同。譬如:在室温下测定N型硅时,沿(100)方向加应力,并沿此方向通电流的压阻系数π11=102.2×10-11m2/N;而沿(100)方向施加应力,再沿(010)方向通电流时,其压阻系数π12=53.7×10-11m2/N。此外,不同半导体材料的压阻系数也不同,如在与上述N型硅相同条件下测出N型锗的压阻系数分别为π11=5.2×10-11m2/N;π12=5.5×10-11m2/N。压阻效应被用来制成各种压力、应力、应变、速度、加速度传感器,把力学量转换成电信号。例如:压阻加速度传感器是在其内腔的硅梁根部集成压阻桥(其布置与电桥相似),压阻桥的一端固定在传感器基座上,另一端挂悬着质量块。当传感器装在被测物体上随之运动时,传感器具有与被测件相同的加速度,质量块按牛顿定律(第二定律)产生力作用于硅梁上,形成应力,使电阻桥受应力作用而引起其电阻值变化。把输入与输出导线引出传感器,可得到相应的电压输出值。该电压输出值表征了物体的加速度。★应变片敏感元件的种类很多,其中以电阻应变片(简称电阻片或应变片)最简单、应用最广泛。电阻片分丝式和箔式两大类。丝绕式电阻片是用0.003mm-0.01mm的合金丝绕成栅状制成的;箔式应变片则是用0.003mm-0.01mm厚的箔材经化学腐蚀制成栅状的,其主体敏感栅实际上是一个电阻。金属丝的电阻随机械变形而发生变化的现象称为应变-电性能。电阻片在感受构件的应变时(称做工作片),其电阻同时发生变化。可见前者是由于半导体内部载流子的迁移引起电阻的变化,而后者仅仅是因为外部的机械形变。由于原理不同,根据它们的原理制成的传感器自然也不同。

VB即反向崩溃电压,主要测试该产品在多大电压会崩溃,主要是考虑产品可以 *** 作在多大电压或多大电流

VF即顺向电压,给一个顺向电流测起两端电压,简单的可以说是为了测试产品焊线是否正常

IR即反向电流或漏电流,给一个反向电压测其电流,漏电流应该很小才合理,一般是nA等级

TRR这个我没有用到过,不好意思

望采纳


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7439771.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存