半导体的类型-N型、P型是怎样定义和区别的?

半导体的类型-N型、P型是怎样定义和区别的?,第1张

下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。

P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。

N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。

扩展资料

半导体( semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

以GaN(氮化镓)为代表的第三代半导体材料及器件的开发是新兴半导体产业的核心和基础,其研究开发呈现出日新月异的发展势态。GaN基光电器件中,蓝色发光二极管LED率先实现商品化生产 成功开发蓝光LED和LD之后,科研方向转移到GaN紫外光探测器上 GaN材料在微波功率方面也有相当大的应用市场。氮化镓半导体开关被誉为半导体芯片设计上一个新的里程碑。美国佛罗里达大学的科学家已经开发出一种可用于制造新型电子开关的重要器件,这种电子开关可以提供平稳、无间断电源。

参考资料

半导体-百度百科

1、形成原因不同

在半导体中掺入施主杂质,就得到N型半导体;施主杂质:周期表第V族中的某种元素,例如砷或锑。

在半导体中掺入受主杂质,就得到P型半导体;受主杂质:周期表中第Ⅲ族中的一种元素,例如硼或铟。

2、导电特性不同

P型半导体的导电特性:它是靠空穴导电,掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。

N型半导体的导电特性:掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

3、定义不同

N型半导体,也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。 “N”表示负电的意思,取自英文Negative的第一个字母。在这类半导体中,参与导电的 主要是带负电的电子,这些电子来自半导体中的施主。

P型半导体,也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。由于P型半导体中正电荷量与负电荷量相等,故P型半导体呈电中性。

主要特点:

半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。

在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

在光照和热辐射条件下,其导电性有明显的变化。

晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7464657.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-06
下一篇 2023-04-06

发表评论

登录后才能评论

评论列表(0条)

保存