超薄的半导体薄膜被科学家研制出来,有怎样的作用?

超薄的半导体薄膜被科学家研制出来,有怎样的作用?,第1张

我们的世界在不断的发展之中,现在新材料的研究和开发是一个热门的话题,因为一种新材料的问世,无疑会带来巨大的好处。新材料的发现能够让科学技术得到进步,同时新材料能够成为一个国家的战略物资,所以现在各个国家都在加紧研究新材料。

二零一八年期间新材料越来越多,让人有一种目不暇接的感觉,但是这些新材料的出现,确实给我们的生活带来巨大的改变,所以我们学习科学的时候,一点要注意新材料的事情,这样才能够跟上社会的发展,跟上科学技术的脚部,二零一八比较吸引人的一种新材料美女小倩给大家介绍一下。

有一种新材料未来很可能会给我们带来新的产品,这种材料是一种特殊的材质,能够取代硅。我们知道硅是一种地球上比较多的材料,所以我们制作半导体薄膜的时候会使用这种材料,可是这种材料制作的产品比较厚重,所以使用起来并不是很方便,而这种新材料则改变了这个模式。

美国麻省理工学院【MIT】的科学家们研制出一种超薄的半导体薄膜,这种新的材料,无疑会给未来的电子器材地带来一场重大的改革,这项技术很可能将会使用在很多城市建设方面,对于建设一个未来的智能城市,提供了一个新的办法和一个新的方案。

这种新技术使用一种【远程外延】的新方法,能够将一些特殊的材料进行一系列的改变,从而能够制造出更加轻薄的材料,这样一来就能够改变传感器和太阳能电池的体积,以及我们使用的计算机和智能手机,这样的材料一旦开始使用将会改变我们现在的生活。

美国的这些?研究人员已经开始着手制造出一些由砷化镓以及氮化镓的材料,同时也利用氟化锂材料制造柔性薄膜,这些产品确实在超薄方面做得十分出色,那么怎么样出色呢?美女小倩给大家举个例子,一旦这个技术出现,那么将会让手机能够给纸张一样,贴在皮肤上即可。

不过这些技术依旧没有成熟起来,目前制造的这些材料造价十分的昂贵,所以根本没有办法让老百姓使用。所以科学家现在开始在节约成本方面进行努力,当然这条路还很长,所以我们还要等待很久。不过随着科学技术的不断进步,总有一天我们会看这些产品。

透明导电薄膜。虽然目前电阻率等性能仍较低,但由于材料成本低、制造工艺简单,因此有望替代ITO用作液晶显示器等的透明导电薄膜。 空心阴极法生长半导体薄膜.

以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。

具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关於用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展著。

分类 目前主要的非晶态半导体有两大类。

硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。

四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。

非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决於原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应於价带;反键态对应於导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有著本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大於原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似於晶体中

半导体( semiconductor)指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。

超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。在实验中,若导体电阻的测量值低于一个极小值,可以认为电阻为零。

半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。今日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关连。

人类最初发现超导体是在1911年,这一年荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes)等人发现,汞在极低的温度下,其电阻消失,呈超导状态。此后超导体的研究日趋深入,一方面,多种具有实用潜力的超导材料被发现,另一方面,对超导机理的研究也有一定进展。

扩展资料:

超导体基本特性:

一、完全导电性

完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。

二、完全抗磁性

完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项 *** 作的顺序可以颠倒。

三、通量量子化

通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。

参考资料来源:

百度百科—超导体

百度百科—半导体


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7470510.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-06
下一篇 2023-04-06

发表评论

登录后才能评论

评论列表(0条)

保存