投资者一直很关注半导体行业,并且这个行业也得到了国家的大力扶持,我们能不能投资南大光电这只股票呢,下面我就认真的来展开分析。开始阐述南大光电前,我整理好的半导体行业龙头股名单分享给大家,点击就可以领取:宝藏资料!半导体行业龙头股一栏表
一、从公司角度来看
公司介绍:江苏南大光电材料股份有限公司主要从事先进前驱体材料、电子特气、光刻胶及配套材料三类半导体材料产品生产、研发和销售,是MO源产业化生产的企业,也是全球主要的MO源生产商,其主要产品有MO源产品、高纯ALD/CVD前驱体、OLED材料等。南大光电依托企业自主创新平台,全面推进研发创新能力建设,自主研发的多个产品获得"高新技术产品认定证书"、"国家火炬计划项目证书"等荣誉。
粗略的对南大光电进行研究后,下面来分析一下亮点,了解一下南大光电是否值得入手。
亮点一:自主研发ArF光刻胶产品,加速公司光刻胶业务发展
公司成功自主研发出国内首支通过客户认证的ArF光刻胶产品,完成了国内ArF光刻胶从零到一的重大突破,目前公司已完成两条光刻胶生产线的建设,25吨是光刻胶的年产能。如今,ArF光刻胶产品已接到小批量订单,光刻胶现在正逐步向国产化趋势发展,光刻胶业务将带动公司业绩迈入前所未有的成长空间。
亮点二:多维度布局半导体材料,技术优势明显
电子特气方面,新一代安全源、混气产品相继产业化,最新升级的超高纯砷烷产品品质在测试中已超过目前国际先进同行的技术水平,超高纯磷烷产品也跨入国际一流制程的芯片企业,公司氢类电子特气已跻身世界前端。MO源方面,公司通过提升MO源超纯化和超纯分析技术实现了在第三代半导体领域的新应用市场增长,高纯ALD/CVD前驱体产品也实现批量供货国内外先进半导体企业。考虑到字数原因,这篇研究报告把关于南大光电更深入的分析和潜在风险都详细写了,点开便能看到:【深度研报】南大光电点评,建议收藏!
二、从行业角度看
十四五规划提到要对人工智能、量子信息、集成电路等项目进行扶持,这个无疑是利好。最近几年,美国不断和其他国家共同对中国进行高科技封锁,不愿意让我们中国的设备和技术走向世界,美国的这种做法让国内市场对半导体技术国产化的需求增加了不止一点点,也从而推进了国内半导体全产业链的发展。
光刻胶方面:在供给端中,会受到晶圆厂扩产、疫情等的影响,光刻胶出现了供不应求的局面。在需求端中,国内非常多家国内晶圆厂也在努力抓产能,国内市场对于光刻胶的需求量要远超供给量,且差距保持连年增长,尤其在ArF、高端KrF等半导体光刻胶方面,光刻胶作为"卡脖子"产品在对国产替代方面的需求量在不断激增 。
总体来说,我国对身为高科技产业的半导体行业非常看重,南大光电作为行业的领航者,将会得到很好的发展。可是文章存在延时性,倘如想更准确地的了解到关于南大光电未来行情,建议点击下方链接,就有专业的投顾为你诊股,看一下南大光电估值到底是高估了还是低估了:【免费】测一测南大光电现在是高估还是低估?
应答时间:2021-10-03,最新业务变化以文中链接内展示的数据为准,请点击查看
(1)热敏性 半导体材料的电阻率与温度有密切的关系。温度升高,半导体的电阻率会明显变小。例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半。(2)光电特性 很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了。例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧。半导体受光照后电阻明显变小的现象称为“光导电”。利用光导电特性制作的光电器件还有光电二极管和光电三极管等。
近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能。目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管。
另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源。
(3)搀杂特性 纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化。例如,纯硅的电阻率为214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米。因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件
半导体的导电性能比导体差而比绝缘体强。实际上,半导体与导体、绝缘体的区别在不仅在于导电能力的不同,更重要的是半导体具有独特的性能(特性)。
1. 在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—-这是半导体最显著、最突出的特性。例如,晶体管就是利用这种特性制成的。
2. 当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降。这种特性称为“热敏”,热敏电阻就是利用半导体的这种特性制成的。
3. 当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。
由此可见,温度和光照对晶体管的影响很大。因此,晶体管不能放在高温和强烈的光照环境中。在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体”。
P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。
一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。
图1
在P型半导体的N型半导体相结合的地方,就会形成一个特殊的薄层,这个特殊的薄层就叫“PN结”。晶体二极管实际上就是由一个PN结构成的(见图1)。
例如,收音机中应用的晶体二极管,其触丝(即触针)部分相当于P型半导体,N型锗片就是N型半导体,他们之间的接触面就是PN结。P端(或P端引出线)叫晶体二极管的正端(也称正极)。N端(或N端引出线)叫晶体二极管的负端(也称负极)。
如果像图2那样,把正端连接电池的正极,把负端接电池的负极,这是PN结的电阻值就小到只有几百欧姆了。因此,通过PN结的电流(I=U/R)就很大。这样的连接方法(图2a)叫“正向连接”。正向连接时,晶体管二极管(或PN结)两端承受的电压叫“正向电压”;处在正向电压下,二极管(或PN结)的电阻叫“正向电阻”,在正向电压下,通过二极管(或PN结)的电流叫“正向电流”。很明显,因为晶体二极管的正向电阻很小(几百欧姆),在一定正向电压下,正向电流(I=U/R)就会很大----这表明在正向电压下,二极管(或PN结)具有像导体一样的导电本领。
图2a 图2b
反过来,如果把P端接到电池的负极,N端接到电池的正极(见图2b)。这时PN结的电阻很大(大到几百千殴),电流(I=U/R)几乎不能通过二极管,或者说通过的电流很微弱。这样的连接方法叫“反向连接”。反向连接时,晶体管二极管(或PN结)两端承受的电压叫“反向电压”;处在反向电压下,二极管(或PN结)的电阻叫“反向电阻”,在反向电压下,通过二极管(或PN结)的电流叫“反向电流”。显然,因为晶体二极管的正向电阻很大(几百千欧姆),在一定的反向电压下,正向电流(I=U/R)就会很小,甚至可以忽略不计,----这表明在一定的反向电压下,二极管(或PN结)几乎不导电。
上叙实验说明这样一个结论:晶体二极管(或PN结)具有单向导电特性。
晶体二极管用字母“D”代表,在电路中常用图3的符号表示,即表示电流(正电荷)只能顺着箭头方向流动,而不能逆着箭头方向流动。图3是常用的晶体二极管的外形及符号。
图3
利用二极管的单向导电性可以用来整流(将交流电变成直流电)和检波(从高频或中频电信号取出音频信号)以及变频(如把高频变成固定的中频465千周)等。
PN结的极间电容----PN结的P型和N型两快半导体之间构成一个电容量很小的电容,叫做“极间电容”(如图4所示)。由于电容抗随频率的增高而减小。所以,PN结工作于高频时,高频信号容易被极间电容或反馈而影响PN结的工作。但在直流或低频下工作时,极间电容对直流和低频的阻抗很大,故一般不会影响PN结的工作性能。PN结的面积越大,极间电容量越大,影响也约大,这就是面接触型二极管(如整流二极管)和低频三极管不能用于高频工作的原因
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)