征求:半导体照明(LED)生产技术

征求:半导体照明(LED)生产技术,第1张

1、生产方法

a.清洗:采用超声波清洗PCB 或LED 支架,并烘干。

b.装架:在LED管芯(大圆片)底部电极备上银胶后进行扩张,将扩张后的管芯(大圆片)安置在刺晶台上,在显微镜下用刺晶笔将管芯一个一个安装在PCB 或LED 支架相应的焊盘上,随后进行烧结使银胶固化。

c.压焊:用铝丝或金丝焊机将电极连接到LED 管芯上,以作电流注入的引线。LED 直接安装在PCB上的,一般采用铝丝焊机。(制作白光TOP-LED 需要金线焊机)

d.封装:通过点胶,用环氧将LED管芯和焊线保护起来。在PCB 板上点胶,对固化后胶体形状有严格要求,这直接关系到背光源成品的出光亮度。这道工序还将承担点荧光粉(白光LED)的任务。

e.焊接:如果背光源是采用SMD-LED 或其它已封装的LED,则在装配工艺之前,需要将LED 焊接到PCB 板上。

f.切膜:用冲床模切背光源所需的各种扩散膜、反光膜等。

g.装配:根据图纸要求,将背光源的各种材料手工安装正确的位置。

h.测试:检查背光源光电参数及出光均匀性是否良好。

g.包装:将成品按要求包装、入库。

2、工艺流程

任务:是将外引线连接到LED芯片的电极上,同时保护好LED 芯片,并且起到提高光取出效率的作用。关键工序有装架、压焊、封装。

工艺流程及说明:

a. 芯片检验

材料表面是否有机械损伤及麻点麻坑(lockhill)芯片尺寸及电极大小是否符合工艺要求电极图案是否完整。

b. 扩片

由于LED 芯片在划片后依然排列紧密间距很小(约0.1mm),不利于后工序的 *** 作。我们采用扩片机对黏结芯片的膜进行扩张,是LED 芯片的间距拉伸到约0.6mm。也可以采用手工扩张,但很容易造成芯片掉落浪费等不良问题。

c. 点胶

在LED 支架的相应位置点上银胶或绝缘胶。(对于GaAs 、SiC导电衬底,具有背面电极的红光、黄光、黄绿芯片,采用银胶。对于蓝宝石绝缘衬底的蓝光、绿光LED 芯片,采用绝缘胶来固定芯片。)工艺难点在于点胶量的控制,在胶体高度、点胶位置均有详细的工艺要求。由于银胶和绝缘胶在贮存和使用均有严格的要求,银胶的醒料、搅拌、使用时间都是工艺上必须注意的事项。

d. 备胶

备胶和点胶相反,备胶是用备胶机先把银胶涂在LED 背面电极上,然后把背部带银胶的LED 安装在LED 支架上。备胶的效率远高于点胶,但不是所有产品均适用备胶工艺。

e. 手工刺片

将扩张后LED芯片(备胶或未备胶)安置在刺片台的夹具上,LED 支架放在夹具底下,在显微镜下用针将LED芯片一个一个刺到相应的位置上。手工刺片和自动装架相比有一个好处,便于随时更换不同的芯片,适用于需要安装多种芯片的产品。

f. 自动装架

自动装架其实是结合了沾胶(点胶)和安装芯片两大步骤,先在LED 支架上点上银胶(绝缘胶),然后用真空吸嘴将LED 芯片吸起移动位置,再安置在相应的支架位置上。自动装架在工艺上主要要熟悉设备 *** 作编程,同时对设备的沾胶及安装精度进行调整。在吸嘴的选用上尽量选用胶木吸嘴,防止对LED 芯片表面的损伤,特别是兰、绿色芯片必须用胶木的。因为钢嘴会划伤芯片表面的电流扩散层。

g. 烧结

烧结的目的是使银胶固化,烧结要求对温度进行监控,防止批次性不良。银胶烧结的温度一般控制在150℃,烧结时间2 小时。根据实际情况可以调整到170℃,1 小时。绝缘胶一般150℃,1 小时。银胶烧结烘箱的必须按工艺要求隔2 小时(或1 小时)打开更换烧结的产品,中间不得随意打开。烧结烘箱不得再其他用途,防止污染。

h. 压焊

压焊的目的将电极引到LED 芯片上,完成产品内外引线的连接工作。LED 的压焊工艺有金丝球焊和铝丝压焊两种。铝丝压焊的过程:先在LED 芯片电极上压上第一点,再将铝丝拉到相应的支架上方,压上第二点后扯断铝丝。金丝球焊过程则在压第一点前先烧个球,其余过程类似。压焊是LED 封装技术中的关键环节,工艺上主要需要监控的是压焊金丝(铝丝)拱丝形状,焊点形状,拉力。对压焊工艺的深入研究涉及到多方面的问题,如金(铝)丝材料、超声功率、压焊压力、劈刀(钢嘴)选用、劈刀(钢嘴)运动轨迹等等。

i. 点胶封装LED 的封装

点胶封装LED 的封装主要有点胶、灌封、模压三种。基本上工艺控制的难点是气泡、多缺料、黑点。设计上主要是对材料的选型,选用结合良好的环氧和支架。(一般的LED 无法通过气密性试验)TOP-LED 和Side-LED 适用点胶封装。手动点胶封装对 *** 作水平要求很高(特别是白光LED),主要难点是对点胶量的控制,因为环氧在使用过程中会变稠。白光LED 的点胶还存在荧光粉沉淀导致出光色差的问题。

j. 灌胶封装Lamp-LED 的封装

灌胶封装Lamp-LED 的封装采用灌封的形式。灌封的过程是先在LED 成型模腔内注入液态环氧,然后插入压焊好的LED 支架,放入烘箱让环氧固化后,将LED 从模腔中脱出即成型。

k. 模压封装

模压封装将压焊好的LED 支架放入模具中,将上下两副模具用液压机合模并抽真空,将固态环氧放入注胶道的入口加热用液压顶杆压入模具胶道中,环氧顺着胶道进入各个LED 成型槽中并固化。

l. 固化与后固化

固化是指封装环氧的固化,一般环氧固化条件在135℃,1 小时。模压封装一般在150℃,4 分钟。

后固化是为了让环氧充分固化,同时对LED 进行热老化。后固化对于提高环氧与支架(PCB)的粘接强度非常重要。一般条件为120℃,4 小时。

m. 切筋和划片

由于LED在生产中是连在一起的(不是单个),Lamp 封装LED采用切筋切断LED支架的连筋。SMD-LED 则是在一片PCB板上,需要划片机来完成分离工作。

n. 测试

测试LED 的光电参数、检验外形尺寸,同时根据客户要求对LED 产品进行分选。

o. 包装

将成品进行计数包装。超高亮LED 需要防静电包装。

3、工艺技术来源

(1)点胶,难点在于点胶量的控制,采用华中科技大学TOP-LED 和Side-LED的点胶技术。

(2)封装,采用国际普遍的封装形式:Lamp-LED、TOP-LED、Side-LED、SMD-LED、High-Power-LED 等。

(3)其余工艺技术,由公司自主研发。

4、LED白光源的生产工艺(生产装置)流程图

 LED芯片的制造工艺流程

外延生长的基本原理是:在一块加热至适当温度的衬底基片(主要有蓝宝石和、SiC、Si)上,气态物质InGaAlP有控制的输送到衬底表面,生长出特定单晶薄膜。目前LED外延片生长技术主要采用有机金属化学气相沉积方法。

MOCVD介绍:

金属有机物化学气相淀积(Metal-Organic Chemical Vapor Deposition,简称 MOCVD), 1968年由美国洛克威尔公司提出来的一项制备化合物半导体单品薄膜的新技术。该设备集精密机械、半导体材料、真空电子、流体力学、光学、化学、计算机多学科为一体,是一种自动化程度高、价格昂贵、技术集成度高的尖端光电子专用设备,主要用于GaN(氮化镓)系半导体材料的外延生长和蓝色、绿色或紫外发光二极管芯片的制造,也是光电子行业最有发展前途的专用设备之一。

LED芯片的制造工艺流程:

外延片→清洗→镀透明电极层→透明电极图形光刻→腐蚀→去胶→平台图形光刻→干法刻蚀→去胶→退火→SiO2沉积→窗口图形光刻→SiO2腐蚀→去胶→N极图形光刻→预清洗→镀膜→剥离→退火→P极图形光刻→镀膜→剥离→研磨→切割→芯片→成品测试。

其实外延片的生产制作过程是非常复杂的,在展完外延片后,下一步就开始对LED外延片做电极(P极,N极),接着就开始用激光机切割LED外延片(以前切割LED外延片主要用钻石刀),制造成芯片后,在晶圆上的不同位置抽取九个点做参数测试,如图所示:

1、主要对电压、波长、亮度进行测试,能符合正常出货标准参数的晶圆片再继续做下一步的 *** 作,如果这九点测试不符合相关要求的晶圆片,就放在一边另外处理。

2、晶圆切割成芯片后,100%的目检(VI/VC), *** 作者要使用放大30倍数的显微镜下进行目测。

3、接着使用全自动分类机根据不同的电压,波长,亮度的预测参数对芯片进行全自动化挑选、测试和分类。

4、最后对LED芯片进行检查(VC)和贴标签。芯片区域要在蓝膜的中心,蓝膜上最多有5000粒芯片,但必须保证每张蓝膜上芯片的数量不得少于1000粒,芯片类型、批号、数量和光电测量统计数据记录在标签上,附在蜡光纸的背面。蓝膜上的芯片将做最后的目检测试与第一次目检标准相同,确保芯片排列整齐和质量合格。这样就制成LED芯片(目前市场上统称方片)。

在LED芯片制作过程中,把一些有缺陷的或者电极有磨损的芯片,分捡出来,这些就是后面的散晶,此时在蓝膜上有一些不符合正常出货要求的晶片,也就自然成了边片或***等。

刚才谈到在晶圆上的不同位置抽取九个点做参数测试,对于不符合相关要求的晶圆片作另外处理,这些晶圆片是不能直接用来做LED方片,也就不做任何分检了,直接卖给客户了,也就是目前市场上的LED大圆片(但是大圆片里也有好东西,如方片)。

你的问题还挺多,要分开来慢慢解释。1、LED发光:要搞清楚这个问题,首先,你需要了解PN结的形成原理。PN结是一个“由P型和N型半导体材料组成的半导体器件”中,其P型与 N型半导体材料相互结合的部分。P型材料有着“多数可以移动的正电荷(空穴)”和 “少数固定不动的负电荷(负离子)”;N型材料有着“多数可以移动的负电荷(自由电子)”和 “少数固定不动的正电荷(正离子)”;当P型和N型材料接触时,通过结合处,P型材料中的正电荷向N型材料中扩散,而N型材料中的负电荷则向P型材料中扩散。这些扩散的正电荷 与 负电荷相遇而结合,原有的正电荷和负电荷(载流子)消失。因此在结合处的附近区域(结区)中,有一段距离缺少正电荷或负电荷(载流子),但是在这一区域却分布着带电的固定电荷(固定不动的“负离子”或固定不动的“正离子”),这一区域称为空间电荷区 。P 型半导体一边的没有参与扩散的“负离子” ,N 型半导体一边的没有参与扩散的“正离子”,在空间电荷区产生电场,这电场阻止载流子进一步扩散 ,达到平衡。(内建电场)在上面所述的基础上,就可以理解以下几个问题1、LED的发光,既不是PN结,也不是非PN结,而是当LED接通外部电源后,外来的载流子打破空间电荷区的平衡后产生的。因为空间电荷区有阻力,所以载流子要突破这个区域需要能量,当这个能量积累到一定的程度,载流子就可以由P区进入N区,这个进入的过程也是能量释放的过程,在这个过程中,载流子把电势能转换成了光能和热能。单个载流子所释放出的光能是极其微弱的,并且只是一闪而过,不能持续,所以要想有一个持续而又明亮的发光过程,就必须有一个持续的外部电源以及更多的载流子参与进来。因为这样的一个过程除了发光,同时还在发热,有发热则说明器件在进行有效工作的同时,自身还在产生消耗,这个消耗对器件本身有着老化和破坏的作用,因此,LED的寿命跟制作这个LED的材料还有它的工作环境有关系,通常所述的3万小时寿命是指在实验室的相对理想的环境下达到的,实际使用中没有这么长,甚至会因为过度的电压或电流而导致LED瞬间烧毁。光伏效应:光照并不是去导通PN结,在理解这个问题时,你要确定一点,“光”也是能量的一种形式。当光照射到已形成PN结的半导体材料上面,会让这个半导体材料获得一定的能量,这个能量导致P型和N型半导体材料产生出更多的载流子(空穴和自由电子)。因为在光照前,PN结已经形成,也就是内建电场也已形成,由于内建电场是有方向性的,所以光照形成的载流子(光生载流子),会按照这个方向在内建电场中流动(空穴流向N,自由电子流向P),这一动作导致了内建电场的减小。只要光照是持续的,那么,内建电场最终会小到能让光生载流子轻松的突破PN结,从而产生电流,这个时候,这个被光照的半导体材料就具备了能够对外提供电动势的能力。综上所述,在一个拥有PN结的半导体器件中,非PN结部分最大的作用就是产生PN结,只有PN结形成后,这个器件才能拥有上述光照或光电转换的功能。因此,PN结不存在“消耗完”这个概念,只要相结合的P型材料和N型材料还在,这个PN结会永远的存在下去,我们只是利用外力来突破这个PN结,从而达到我们需要的目的。至于半导体器件的寿命,这跟制造半导体器件的材料构成、制造工艺以及使用环境有关,厂商给出的寿命都是在特定的实验室环境下通过测试和推算得出的。(就好像一团泥巴,你用特定的水流量来冲击他,冲击时间是1分钟,完成后,这团泥巴被水冲掉了十分之一的重量,那么推算一下,这团泥巴在这个特定的水流量下,也许可以经受住10分钟的冲击,那我就说他在这个状态下的寿命是10分钟)

满意请采纳


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/7507531.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-06
下一篇 2023-04-06

发表评论

登录后才能评论

评论列表(0条)

保存